Enhanced Photoelectrochemical Water Splitting of In2S3 Photoanodes by Surface Modulation with 2D MoS2 Nanosheets
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jacobsson, T.J. Photoelectrochemical water splitting: An idea heading towards obsolescence. Energy Environ. Sci. 2018, 11, 1977–1979. [Google Scholar] [CrossRef]
- Seo, D.-B.; Trung, T.N.; Kim, D.-O.; Duc, D.V.; Hong, S.; Sohn, Y.; Jeong, J.-R.; Kim, E.-T. Plasmonic Ag-decorated few-layer MoS2 nanosheets vertically grown on graphene for efficient photoelectrochemical water splitting. Nano-Micro Lett. 2020, 12, 172. [Google Scholar] [CrossRef] [PubMed]
- Horani, F.; Lifshitz, E. Unraveling the growth mechanism forming stable γ-In2S3 and β-In2S3 colloidal nanoplatelets. Chem. Mater. 2019, 31, 1784–1793. [Google Scholar] [CrossRef]
- Lee, B.R.; Jang, H.W. β-In2S3 as water splitting photoanodes: Promise and challenges. Electron. Mater. Lett. 2021, 17, 119–135. [Google Scholar] [CrossRef]
- Li, M.; Tu, X.; Su, Y.; Lu, J.; Hu, J.; Cai, B.; Zhou, Z.; Yang, Z.; Zhang, Y. Controlled growth of vertically aligned ultrathin In2S3 nanosheet arrays for photoelectrochemical water splitting. Nanoscale 2018, 10, 1153–1161. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Wu, J.; Lv, B.; Wei, J.; Huang, R.; Wang, X.; Wang, W. NiO nanodot decorated In2S3 nanosheet arrays photoanode toward low-onset-potential photoelectrochemical hydrogen evolution. Sol. Energy 2024, 273, 112547. [Google Scholar] [CrossRef]
- Ding, Q.; Song, B.; Xu, P.; Jin, S. Efficient electrocatalytic and photoelectrochemical hydrogen generation using MoS2 and related compounds. Chem 2016, 1, 699–726. [Google Scholar] [CrossRef]
- Frey, G.L.; Elani, S.; Homyonfer, M.; Feldman, Y.; Tenne, R. Optical-absorption spectra of inorganic fullerene like MS2 (M = Mo, W). Phys. Rev. B 1998, 57, 6666. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Q.; Yap, C.C.R.; Tay, B.K.; Edwin, T.H.T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of raman scattering. Adv. Funct. Mater. 2012, 22, 1385. [Google Scholar] [CrossRef]
- Mak, K.F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T.F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805. [Google Scholar] [CrossRef] [PubMed]
- Trung, T.N.; Seo, D.B.; Quang, N.D.; Kim, D.; Kim, E.T. Enhanced photoelectrochemical activity in the heterostructure of vertically aligned few-layer MoS2 flakes on ZnO. Electrochim. Acta 2018, 260, 150–156. [Google Scholar] [CrossRef]
- Singh, J.; Soni, R.K. Enhanced sunlight driven photocatalytic activity of In2S3 nanosheets functionalized MoS2 nanoflowers heterostructures. Sci. Rep. 2021, 11, 15352. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Jiang, Y.; Yang, J.; Hao, M.; Tong, Z.; Jianga, L.; Wu, Z. MoS2 nanodot decorated In2S3 nanoplates: A novel heterojunction with enhanced photoelectrochemical performance. Chem. Commun. 2016, 52, 1867–1870. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Shan, F.; Jiang, X.; Ji, J.; Wang, F. One-pot synthesis of MoS2/In2S3 ultrathin nanoflakes with mesh-shaped structure on indium tin oxide as photocathode for enhanced photo-and electrochemical hydrogen evolution reaction. Appl. Surf. Sci. 2018, 435, 822–831. [Google Scholar] [CrossRef]
- Timoumi, A.; Belhadj, W.; Alamri, S.N.; Turkestani, M.K.A. Experimental studies and new theoretical modeling on the properties of In2S3 thin films. Opt. Mater. 2021, 118, 111238. [Google Scholar] [CrossRef]
- Lee, C.; Yan, H.; Brus, L.E.; Heinz, T.F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single and few-layer MoS2. ACS Nano 2010, 4, 2695–2700. [Google Scholar] [CrossRef] [PubMed]
- Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M.; Chhowalla, M. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 2011, 11, 5111–5116. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Zhu, Y.; Tahini, H.A.; Lin, Q.; Chen, Y.; Guan, D.; Zhou, C.; Hu, Z.; Lin, H.-J.; Chan, T.-S.; et al. Single-phase perovskite oxide with super-exchange induced atomic-scale synergistic active centers enables ultrafast hydrogen evolution. Nat. Commun. 2020, 11, 5657. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.U.M.; Al-Shahry, M.; Ingler, W.B., Jr. Efficient photochemical water splitting by a chemically modified n-TiO2. Science 2002, 297, 2243–2245. [Google Scholar] [CrossRef] [PubMed]
- Bernède, J.C.; Barreau, N.; Marsillac, S.; Assmann, L. Band alignment at β-In2S3/TCO interface. Appl. Surf. Sci. 2002, 195, 222–228. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jayarathna, R.A.; Heo, J.-H.; Kim, E.-T. Enhanced Photoelectrochemical Water Splitting of In2S3 Photoanodes by Surface Modulation with 2D MoS2 Nanosheets. Nanomaterials 2024, 14, 1628. https://doi.org/10.3390/nano14201628
Jayarathna RA, Heo J-H, Kim E-T. Enhanced Photoelectrochemical Water Splitting of In2S3 Photoanodes by Surface Modulation with 2D MoS2 Nanosheets. Nanomaterials. 2024; 14(20):1628. https://doi.org/10.3390/nano14201628
Chicago/Turabian StyleJayarathna, Roshani Awanthika, Jun-Ho Heo, and Eui-Tae Kim. 2024. "Enhanced Photoelectrochemical Water Splitting of In2S3 Photoanodes by Surface Modulation with 2D MoS2 Nanosheets" Nanomaterials 14, no. 20: 1628. https://doi.org/10.3390/nano14201628
APA StyleJayarathna, R. A., Heo, J.-H., & Kim, E.-T. (2024). Enhanced Photoelectrochemical Water Splitting of In2S3 Photoanodes by Surface Modulation with 2D MoS2 Nanosheets. Nanomaterials, 14(20), 1628. https://doi.org/10.3390/nano14201628