Near-Plasma Chemical Surface Engineering
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Activation of PTFE for Wettability Control
3.2. Cyclic Polymerization and Etching of HMDSO Coatings
4. Discussion
4.1. Characteristics of Near-Plasma Chemistry
4.2. Impact of Near-Plasma Chemistry on Plasma Etching
4.3. Impact of Near-Plasma Chemistry on Deposition/Etching Processes
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tabarés, F.L. (Ed.) Plasma Applications for Material Modification: From Microelectronics to Biological Materials; Jenny Stanford Publishing: New York, NY, USA, 2021; ISBN 978-1-00-311920-3. [Google Scholar]
- Palumbo, F.; Fanelli, F.; Milella, A.; Favia, P.; Fracassi, F. Plasma Processes for the Surface Engineering of Polymers. In Plasma Applications in Gases, Liquids and Solids; World Scientific: Singapore, 2023; pp. 57–120. ISBN 9789811275920. [Google Scholar]
- Fridman, A. Plasma Chemistry; Cambridge University Press: Cambridge, UK, 2008; ISBN 978-0-521-84735-3. [Google Scholar]
- Adamovich, I.; Agarwal, S.; Ahedo, E.; Alves, L.L.; Baalrud, S.; Babaeva, N.; Bogaerts, A.; Bourdon, A.; Bruggeman, P.J.; Canal, C.; et al. The 2022 Plasma Roadmap: Low Temperature Plasma Science and Technology. J. Phys. D Appl. Phys. 2022, 55, 373001. [Google Scholar] [CrossRef]
- Lee, W.J.; Cho, T.-Y.; Choa, S.-H.; Cho, S.-K. Environmental Reliability and Moisture Barrier Properties of Silicon Nitride and Silicon Oxide Films Using Roll-to-Roll Plasma Enhanced Chemical Vapor Deposition. Thin Solid Films 2021, 720, 138524. [Google Scholar] [CrossRef]
- Booth, J.-P.; Mozetič, M.; Nikiforov, A.; Oehr, C. Foundations of Plasma Surface Functionalization of Polymers for Industrial and Biological Applications. Plasma Sources Sci. Technol. 2022, 31, 103001. [Google Scholar] [CrossRef]
- Friedrich, J.L.; Meichsner, J. (Eds.) Nonthermal Plasmas for Materials Processing; Wiley-Scrivener Publishing: Hoboken, NJ, USA, 2022; ISBN 978-1-119-36476-4. [Google Scholar]
- Montes, L.; Román, J.M.; García-Casas, X.; Castillo-Seoane, J.; Sánchez-Valencia, J.R.; Barranco, Á.; López-Santos, C.; Borrás, A. Plasma-Assisted Deposition of TiO2 3D Nanomembranes: Selective Wetting, Superomniphobicity, and Self-Cleaning. Adv. Mater. Interfaces 2021, 8, 2100767. [Google Scholar] [CrossRef]
- Ma, C.; Nikiforov, A.; Hegemann, D.; De Geyter, N.; Morent, R.; Ostrikov, K. (Ken) Plasma-Controlled Surface Wettability: Recent Advances and Future Applications. Int. Mater. Rev. 2023, 68, 82–119. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Guo, Z.; Huo, L.; Lei, M. Wettability and Water-Droplet Contact Electrification of Nanostructural Polypropylene (PP) by Plasma Modification. Plasma Process. Polym. 2023, 20, 2200117. [Google Scholar] [CrossRef]
- Ghosh, R.; Baut, A.; Belleri, G.; Kappl, M.; Butt, H.-J.; Schutzius, T.M. Photocatalytically Reactive Surfaces for Simultaneous Water Harvesting and Treatment. Nat. Sustain. 2023, 6, 1663–1672. [Google Scholar] [CrossRef]
- Slobodian, O.M.; Okholin, P.N.; Lytvyn, P.M.; Malyuta, S.V.; Khyzhun, O.Y.; Vasin, A.V.; Rusavsky, A.V.; Gomeniuk, Y.V.; Glotov, V.I.; Nazarova, T.M.; et al. Plasma Treatment as a Versatile Tool for Tuning of Sorption Properties of Thin Nanoporous Carbon Films. Appl. Surf. Sci. 2021, 544, 148876. [Google Scholar] [CrossRef]
- Alvarez, R.; Lopez-Santos, C.; Ferrer, F.J.; Rico, V.; Cotrino, J.; Gonzalez-Elipe, A.R.; Palmero, A. Modulating Low Energy Ion Plasma Fluxes for the Growth of Nanoporous Thin Films. Plasma Process. Polym. 2015, 12, 719–724. [Google Scholar] [CrossRef]
- Navascués, P.; Buchtelová, M.; Zajícková, L.; Rupper, P.; Hegemann, D. Polymerization Mechanisms of Hexamethyldisiloxane in Low-Pressure Plasmas Involving Complex Geometries. Appl. Surf. Sci. 2024, 645, 158824. [Google Scholar] [CrossRef]
- Michlíček, M.; Blahová, L.; Dvořáková, E.; Nečas, D.; Zajíčková, L. Deposition Penetration Depth and Sticking Probability in Plasma Polymerization of Cyclopropylamine. Appl. Surf. Sci. 2021, 540, 147979. [Google Scholar] [CrossRef]
- Blanchard, N.E.; Hanselmann, B.; Drosten, J.; Heuberger, M.; Hegemann, D. Densification and Hydration of HMDSO Plasma Polymers: Densification and Hydration of HMDSO Films. Plasma Process. Polym. 2015, 12, 32–41. [Google Scholar] [CrossRef]
- Barranco, A.; Groening, P. Fluorescent Plasma Nanocomposite Thin Films Containing Nonaggregated Rhodamine 6G Laser Dye Molecules. Langmuir 2006, 22, 6719–6722. [Google Scholar] [CrossRef] [PubMed]
- Vandencasteele, N.; Nisol, B.; Viville, P.; Lazzaroni, R.; Castner, D.G.; Reniers, F. Plasma-Modified PTFE for Biological Applications: Correlation between Protein-Resistant Properties and Surface Characteristics. Plasma Process. Polym. 2008, 5, 661–671. [Google Scholar] [CrossRef] [PubMed]
- Shenton, M.J.; Stevens, G.C. Surface Modification of Polymer Surfaces: Atmospheric Plasma versus Vacuum Plasma Treatments. J. Phys. D Appl. Phys. 2001, 34, 2761. [Google Scholar] [CrossRef]
- Lopaev, D.V.; Zyryanov, S.M.; Zotovich, A.I.; Rakhimova, T.V.; Mankelevich, Y.A.; Voronina, E.N. Damage to Porous SiCOH Low-k Dielectrics by O, N and F Atoms at Lowered Temperatures. J. Phys. D Appl. Phys. 2020, 53, 175203. [Google Scholar] [CrossRef]
- Chen, X.; Hogan, C.J. Nanoparticle Dynamics in the Spatial Afterglows of Nonthermal Plasma Synthesis Reactors. Chem. Eng. J. 2021, 411, 128383. [Google Scholar] [CrossRef]
- Obrero, J.M.; Filippin, A.N.; Alcaire, M.; Sanchez-Valencia, J.R.; Jacob, M.; Matei, C.; Aparicio, F.J.; Macias-Montero, M.; Rojas, T.C.; Espinos, J.P.; et al. Supported Porous Nanostructures Developed by Plasma Processing of Metal Phthalocyanines and Porphyrins. Front. Chem. 2020, 8, 520. [Google Scholar] [CrossRef]
- Alcaire, M.; Aparicio, F.J.; Obrero, J.; López-Santos, C.; Garcia-Garcia, F.J.; Sánchez-Valencia, J.R.; Frutos, F.; Ostrikov, K.; Borrás, A.; Barranco, A. Plasma Enabled Conformal and Damage Free Encapsulation of Fragile Molecular Matter: From Surface-Supported to On-Device Nanostructures. Adv. Funct. Mater. 2019, 29, 1903535. [Google Scholar] [CrossRef]
- Kim, H.-J.; Bae, J.H.; Lee, S.; Kim, J.; Jung, S.; Jo, C.; Lee, J.Y.; Seo, J.H.; Park, S. Structural and Functional Changes in Soybean Protein via Remote Plasma Treatments. Molecules 2023, 28, 3882. [Google Scholar] [CrossRef]
- Korzec, D.; Theirich, D.; Werner, F.; Traub, K.; Engemann, J. Remote and Direct Microwave Plasma Deposition of HMDSO Films: Comparative Study. Surf. Coat. Technol. 1995, 74–75, 67–74. [Google Scholar] [CrossRef]
- Lin, K.-Y.; Preischl, C.; Hermanns, C.F.; Rhinow, D.; Solowan, H.-M.; Budach, M.; Edinger, K.; Oehrlein, G.S. SiO2 Etching and Surface Evolution Using Combined Exposure to CF4/O2 Remote Plasma and Electron Beam. J. Vac. Sci. Technol. A 2022, 40, 063004. [Google Scholar] [CrossRef]
- Bai, K.H.; Choi, C.K.; Chang, H.Y. Electron Temperature Control with a Small Mesh Number Grid in Inductively Coupled Plasmas. Plasma Sources Sci. Technol. 2004, 13, 662. [Google Scholar] [CrossRef]
- Ikada, R.; Nishimura, G.; Kato, K.; Iizuka, S. Production of High Density and Low Electron-Temperature Plasma by a Modified Grid-Biasing Method Using Inductively Coupled RF Discharge. Thin Solid Films 2004, 457, 55–58. [Google Scholar] [CrossRef]
- Gergs, T.; Monti, C.; Gaiser, S.; Amberg, M.; Schütz, U.; Mussenbrock, T.; Trieschmann, J.; Heuberger, M.; Hegemann, D. Nanoporous SiOx Plasma Polymer Films as Carrier for Liquid-Infused Surfaces. Plasma Process. Polym. 2022, 19, 2200049. [Google Scholar] [CrossRef]
- Primc, G. Recent Advances in Surface Activation of Polytetrafluoroethylene (PTFE) by Gaseous Plasma Treatments. Polymers 2020, 12, 2295. [Google Scholar] [CrossRef] [PubMed]
- Okubo, M. Enhanced Fluoropolymer Surface Adhesion by a Plasma Hybrid Process—Metal Plating Technology and Its Application to Millimeter-Wave Devices. In Plasma Modification of Polyolefins: Synthesis, Characterization and Applications; Baneesh, N.S., Sari, P.S., Vackova, T., Thomas, S., Eds.; Engineering Materials; Springer International Publishing: Cham, Switzerland, 2022; pp. 215–240. ISBN 978-3-030-52264-3. [Google Scholar]
- Yasuda, H.; Marsh, H.C.; Brandt, E.S.; Reilley, C.N. ESCA Study of Polymer Surfaces Treated by Plasma. J. Polym. Sci. Polym. Chem. Ed. 1977, 15, 991–1019. [Google Scholar] [CrossRef]
- Pachchigar, V.; Gaur, U.K.; Amrutha, T.V.; Sooraj, K.P.; Hans, S.; Srivastava, S.K.; Ranjan, M. Hydrophobic to Superhydrophobic and Hydrophilic Transitions of Ar Plasma-Nanostructured PTFE Surfaces. Plasma Process. Polym. 2022, 19, 2200037. [Google Scholar] [CrossRef]
- Zanini, S.; Barni, R.; Pergola, R.D.; Riccardi, C. Modification of the PTFE Wettability by Oxygen Plasma Treatments: Influence of the Operating Parameters and Investigation of the Ageing Behaviour. J. Phys. D Appl. Phys. 2014, 47, 325202. [Google Scholar] [CrossRef]
- Felix, T.; Soldi, V.; Debacher, N.A. Surface Modification and Hydrophobic Recovery (Aging) of Polyolefin Exposed to Plasma. In Plasma Modification of Polyolefins: Synthesis, Characterization and Applications; Baneesh, N.S., Sari, P.S., Vackova, T., Thomas, S., Eds.; Engineering Materials; Springer International Publishing: Cham, Switzerland, 2022; pp. 197–214. ISBN 978-3-030-52264-3. [Google Scholar]
- Hunke, H.; Soin, N.; Shah, T.H.; Kramer, E.; Pascual, A.; Karuna, M.S.L.; Siores, E. Low-Pressure H2, NH3 Microwave Plasma Treatment of Polytetrafluoroethylene (PTFE) Powders: Chemical, Thermal and Wettability Analysis. Materials 2015, 8, 2258–2275. [Google Scholar] [CrossRef]
- König, U.; Nitschke, M.; Pilz, M.; Simon, F.; Arnhold, C.; Werner, C. Stability and Ageing of Plasma Treated Poly(Tetrafluoroethylene) Surfaces. Colloids Surf. B Biointerfaces 2002, 25, 313–324. [Google Scholar] [CrossRef]
- Hai, W.; Hi, T.; Shimizu, K.; Yajima, T. Preparation of a Super Hydrophilic Polytetrafluoroethylene Surface Using a Gaseous Ammonia-Water Low-Temperature Plasma. J. Photopol. Sci. Technol. 2015, 28, 479–483. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, Y.; Gu, Y.; Chen, B.; Wang, B.; Yan, J.; Liu, J.; Chen, F.; Zhao, D.; Liu, X. Improving Surface Wettability and Adhesion Property of Polytetrafluoroethylene by Atmospheric-Pressure Ammonia Water-Mixed Plasma Treatment. Vacuum 2022, 196, 110763. [Google Scholar] [CrossRef]
- Xie, X.; de los Arcos, T.; Grundmeier, G. Comparative Analysis of Hexamethyldisiloxane and Hexamethyldisilazane Plasma Polymer Thin Films before and after Plasma Oxidation. Plasma Process. Polym. 2022, 19, 2200052. [Google Scholar] [CrossRef]
- Hegemann, D.; Bülbül, E.; Hanselmann, B.; Schütz, U.; Amberg, M.; Gaiser, S. Plasma Polymerization of Hexamethyldisiloxane: Revisited. Plasma Process. Polym. 2021, 18, 2000176. [Google Scholar] [CrossRef]
- Hegemann, D.; Michlíček, M.; Blanchard, N.E.; Schütz, U.; Lohmann, D.; Vandenbossche, M.; Zajíčková, L.; Drábik, M. Deposition of Functional Plasma Polymers Influenced by Reactor Geometry in Capacitively Coupled Discharges. Plasma Process. Polym. 2016, 13, 279–286. [Google Scholar] [CrossRef]
- Piwowarczyk, J.; Jędrzejewski, R.; Moszyński, D.; Kwiatkowski, K.; Niemczyk, A.; Baranowska, J. XPS and FTIR Studies of Polytetrafluoroethylene Thin Films Obtained by Physical Methods. Polymers 2019, 11, 1629. [Google Scholar] [CrossRef]
- De Los Arcos, T.; Müller, H.; Wang, F.; Damerla, V.R.; Hoppe, C.; Weinberger, C.; Tiemann, M.; Grundmeier, G. Review of Infrared Spectroscopy Techniques for the Determination of Internal Structure in Thin SiO2 Films. Vib. Spectrosc. 2021, 114, 103256. [Google Scholar] [CrossRef]
- Hoppe, C.; Mitschker, F.; Awakowicz, P.; Kirchheim, D.; Dahlmann, R.; De Los Arcos, T.; Grundmeier, G. Adhesion of Plasma-Deposited Silicon Oxide Barrier Layers on PDMS Containing Polypropylene. Surf. Coat. Technol. 2018, 335, 25–31. [Google Scholar] [CrossRef]
- He, Y.; Jin, W.; Wang, Y.; Lv, S.; Wang, R.; Liu, J.; Liu, H. Electron Density and Electron Temperature Control with a Magnetic Field and a Grid in Inductively Coupled Argon Plasma. Plasma Chem. Plasma Process. 2023, 43, 381–400. [Google Scholar] [CrossRef]
- Trieschmann, J.; Hegemann, D. Plasma Polymerization at Different Positions in an Asymmetric Ethylene Discharge. J. Phys. D Appl. Phys. 2011, 44, 475201. [Google Scholar] [CrossRef]
- Bormashenko, E.; Whyman, G.; Multanen, V.; Shulzinger, E.; Chaniel, G. Physical Mechanisms of Interaction of Cold Plasma with Polymer Surfaces. J. Colloid Interface Sci. 2015, 448, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Lojen, D.; Zaplotnik, R.; Primc, G.; Mozetič, M.; Vesel, A. Effect of VUV Radiation and Reactive Hydrogen Atoms on Depletion of Fluorine from Polytetrafluoroethylene Surface. Appl. Surf. Sci. 2020, 533, 147356. [Google Scholar] [CrossRef]
- Rubner, J.; Stellmann, L.; Mertens, A.-K.; Tepper, M.; Roth, H.; Kleines, L.; Dahlmann, R.; Wessling, M. Organosilica Coating Layer Prevents Aging of a Polymer with Intrinsic Microporosity. Plasma Process. Polym. 2022, 19, 2200016. [Google Scholar] [CrossRef]
- Zhou, W.; Bailey, S.; Sooryakumar, R.; King, S.; Xu, G.; Mays, E.; Ege, C.; Bielefeld, J. Elastic Properties of Porous Low-k Dielectric Nano-Films. J. Appl. Phys. 2011, 110, 043520. [Google Scholar] [CrossRef]
- Lopaev, D.V.; Rakhlinsky, V.V.; Zyryanov, S.M.; Mankelevich, Y.A.; Rakhimova, T.V.; Kurchikov, K.A.; Baklanov, M.R. Photoabsorption and Damage of OSG Low-k Films by VUV Emission at 140–160 Nm. Plasma Process. Polym. 2018, 15, 1700166. [Google Scholar] [CrossRef]
HMDSO/O2 | Power Deposition [W] | Power Etching [W] | Refractive Index/Porosity * |
---|---|---|---|
4/40 | 100 | 100 | 1.416/20% |
100 | 300 | 1.418/20% | |
300 | 100 | 1.456/11% | |
300 | 300 | 1.443/14% | |
5/40 | 80 | 100 | 1.434/16% |
100 | 100 | 1.405/23% | |
125 | 100 | 1.412/21% | |
6/40 | 100 | 100 | 1.424/18% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navascués, P.; Schütz, U.; Hanselmann, B.; Hegemann, D. Near-Plasma Chemical Surface Engineering. Nanomaterials 2024, 14, 195. https://doi.org/10.3390/nano14020195
Navascués P, Schütz U, Hanselmann B, Hegemann D. Near-Plasma Chemical Surface Engineering. Nanomaterials. 2024; 14(2):195. https://doi.org/10.3390/nano14020195
Chicago/Turabian StyleNavascués, Paula, Urs Schütz, Barbara Hanselmann, and Dirk Hegemann. 2024. "Near-Plasma Chemical Surface Engineering" Nanomaterials 14, no. 2: 195. https://doi.org/10.3390/nano14020195
APA StyleNavascués, P., Schütz, U., Hanselmann, B., & Hegemann, D. (2024). Near-Plasma Chemical Surface Engineering. Nanomaterials, 14(2), 195. https://doi.org/10.3390/nano14020195