Preparation of Fe@Fe3O4/ZnFe2O4 Powders and Their Consolidation via Hybrid Cold-Sintering/Spark Plasma-Sintering
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.1.1. Synthesis of the Fe@Fe3O4 Core-Shell Particles
2.1.2. Synthesis of ZnFe2O4 Nanoparticles
2.1.3. Elaboration of Fe@Fe3O4/ZnFe2O4 Toroidal-Shaped Magnetic Core
2.2. Characterization Techniques
3. Results and Discussion
3.1. Fe@Fe2O4 Core-Shell Powders
3.2. ZnFe2O4 Nanoparticles
3.3. Hybrid Cold-Sintered/Spark Plasma-Sintered Soft Magnetic Composite
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- He, J.; Yuan, H.; Nie, M.; Guo, H.; Yu, H.; Liu, Z.; Sun, R. Soft magnetic materials for power inductors: State of art and future development. Mater. Today Electron. 2023, 6, 100066. [Google Scholar] [CrossRef]
- Perigo, E.A.; Weidenfeller, B.; Kollar, P.; Fuzer, J. Past, present, and future of soft magnetic composites. Appl. Phys. Rev. 2018, 5, 031301. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, W.; Peng, K. In-situ synthesis and magnetic properties of core-shell structured Fe/Fe3O4 composites. J. Magn. Magn. Mater. 2019, 484, 418–423. [Google Scholar] [CrossRef]
- Jang, M.-S.; Park, J.-M.; Kim, J.; Sun, C.; Koo, B.; Kim, H.-R.; Kwon, Y.-T.; Yang, S.; Lee, J.W.; Kim, Y.; et al. Unprecedented heat resistance of Fe-based soft magnetic composites realized with tunable double insulation layer: Synergy of MgO diffusion barrier and void-filling SiO2 layer. J. Magn. Magn. Mater. 2023, 580, 170893. [Google Scholar] [CrossRef]
- Li, W.; Pu, Y.; Ying, Y.; Kang, Y.; Yu, J.; Zheng, J.; Qiao, L.; Li, J.; Che, S. Magnetic properties and related mechanisms of iron-based soft magnetic composites with high thermal stability in situ compositeferrite coating. J. Alloys Compd. 2020, 829, 154533. [Google Scholar] [CrossRef]
- Silveyra, J.M.; Ferrara, E.; Huber, D.L.; Monson, T.C. Soft magnetic materials for a sustainable and electrified world. Science 2018, 362, 6413. [Google Scholar] [CrossRef]
- Ferraris, L.; Pošković, E.; Franchini, F. New Soft magnetic composites for electromagnetic applications with improved mechanical properties. AIP Adv. 2016, 6, 056209. [Google Scholar] [CrossRef]
- Li, J.; Yu, J.; Li, W.; Che, S.; Zheng, J.; Qiao, L.; Ying, Y. The preparation and magnetic performance of the iron-based soft magnetic composites with the Fe@Fe3O4 powder of in situ surface oxidation. J. Magn. Magn. Mater. 2018, 454, 103–109. [Google Scholar] [CrossRef]
- Dobák, S.; Füzer, J.; Kollár, P.; Fáberováb, M.; Bureš, R. Interplay of domain walls and magnetization rotation on dynamic magnetization process in iron/polymer-matrix soft magnetic composites. J. Magn. Magn. Mater. 2017, 426, 320–327. [Google Scholar] [CrossRef]
- Dias, M.; Mozetic, H.J.; Barboza, J.S.; Martins, R.M.; Pelegrini, L.; Schaeffer, L. Influence of resin type and content on electrical and magnetic properties of soft magnetic composites (SMCs). Powder Technol. 2013, 237, 213–220. [Google Scholar] [CrossRef]
- Liu, D.; Wu, C.; Yan, M. Investigation on sol-gel Al2O3 and hybrid phosphate-alumina insulation coatings for FeSiAl soft magnetic composites. J. Mater. Sci. 2015, 50, 6559–6566. [Google Scholar] [CrossRef]
- Zhao, W.W.; Zhang, X.K.; Xiao, J.Q. Submicrometer laminated Fe/SiO2 soft magnetic composites—An effective route to materials for high-frequency applications. Adv. Mater. 2005, 17, 915–918. [Google Scholar] [CrossRef]
- Taghvaei, H.A.; Ebrahimi, A.; Ghaffari, M.; Janghorban, K. RETRACTED: Magnetic properties of iron-based soft magnetic composites with MgO, coating obtained by sol-gel method. J. Magn. Magn. Mater. 2010, 322, 808–813. [Google Scholar] [CrossRef]
- Yaghtin, M.; Taghvaei, A.H.; Hashemi, B.; Janghorban, K. Effect of heat treatment on magnetic properties of iron-based soft magnetic composites with Al2O3 insulation coating produced by sol-gel method. J. Alloys Compd. 2013, 581, 293–297. [Google Scholar] [CrossRef]
- Geng, K.; Xie, Y.; Xu, L.; Yan, B. Structure and magnetic properties of ZrO2-coated Fe powders and Fe/ZrO2 soft magnetic composites. Adv. Powder Technol. 2017, 28, 2015–2022. [Google Scholar] [CrossRef]
- Wu, S.; Sun, A.; Xu, W.; Zhang, Q.; Zhai, F.; Logan, P.; Volinsky, A.A. Iron-based soft magnetic composites with Mn–Zn ferrite nanoparticles coating obtained by sol–gel method. J. Magn. Magn. Mater. 2012, 324, 3899–3905. [Google Scholar] [CrossRef]
- Zhong, Z.; Wang, Q.; Tao, L.; Jin, L.; Tang, X.; Bai, F.; Zhang, H. Permeability dispersion and magnetic loss of Fe/NixZn1-xFe2O4 soft magnetic composites. IEEE Trans. Magn. 2012, 48, 3622–3625. [Google Scholar] [CrossRef]
- Laxminarayana, S.K.; Manna, B.; Fernandes, N. Venkataramani, Study of AC magnetic properties and core losses of Fe/Fe3O4-epoxy resin soft magnetic composite. Phys. Proc. 2015, 75, 1396–1403. [Google Scholar] [CrossRef]
- Sunday, J.J.; Hanejko, F.G.; Taheri, M.L. Magnetic and microstructural properties of Fe3O4-coated Fe powder soft magnetic composites. J. Magn. Magn. Mater. 2017, 423, 164–170. [Google Scholar] [CrossRef]
- Zhao, G.; Wu, C.; Yan, M. Fe-based soft magnetic composites with high Bs and low core loss by acidic bluing coating. IEEE Trans. Magn. 2015, 51, 1–4. [Google Scholar]
- Zhao, G.; Wu, C.; Yan, M. Enhanced magnetic properties of Fe soft magnetic composites by surface oxidation. J. Magn. Magn. Mater. 2016, 399, 51–57. [Google Scholar] [CrossRef]
- Neamţu, B.V.; Pszola, M.; Opriş, A.; Popa, F.; Marinca, T.F.; Chicinaş, I. Influence of fibres diameter on the AC and DC magnetic characteristics of fibres based soft magnetic composites. Ceramics Int. 2021, 47, 1865–1874. [Google Scholar] [CrossRef]
- Neamţu, B.V.; Pszola, M.; Vermeşan, H.; Stoian, G.; Grigoraş, M.; Opriş, A.; Cotojman, L.; Marinca, T.F.; Lupu, N.; Chicinaş, I. Preparation and characterisation of Fe/Fe3O4 fibres based soft magnetic composites. Ceramics Int. 2021, 47, 581–589. [Google Scholar] [CrossRef]
- Ma, J.; Yuan, Y.; Zou, H.; Yang, B.; Zhou, B.; Yu, R. High-strength and corrosion-resistant Fe/Al2SiO5 soft magnetic composites fabricated by a nanoscale solid-reaction coating method. J. Alloys Compd. 2022, 912, 165174. [Google Scholar] [CrossRef]
- Choi, K.D.; Lee, S.Y.; Kim, H.Y.; Hwang, J.S.; Huh, J.Y.; Yi, K.W.; Byun, J.Y. Effect of annealing on magnetic properties of iron-based soft magnetic composites with iron oxide insulator. J. Magn. Magn. Mater. 2022, 562, 169755. [Google Scholar] [CrossRef]
- Yi, Y.; Peng, Y.; Xia, C.; Wu, L.; Ke, X.; Nie, J. Influence of heat treatment on microstructures and magnetic properties of Fe-based soft magnetic composites prepared by co-precipitation method. J. Magn. Magn. Mater. 2019, 476, 100–105. [Google Scholar] [CrossRef]
- Peng, Y.; Nie, J.; Zhang, W.; Ma, J.; Bao, C.; Cao, Y. Effect of the addition of Al2O3 nanoparticles on the magnetic properties of Fe soft magnetic composites. J. Magn. Magn. Mater. 2016, 399, 88–93. [Google Scholar] [CrossRef]
- Xiao, L.; Fan, H.; Cheng, W.; Li, Z.; Li, M. Magnetic and mechanical properties of Fe-based-Fe2O3/nano-sized MgO-coated composites. Proc. Inst. Mech. Eng. Part L 2019, 233, 1134–1144. [Google Scholar] [CrossRef]
- Strečková, M.; Sopčák, T.; Medvecký, Ľ.; Bureš, R.; Fáberová, M.; Batko, I.; Briančin, J. Preparation, chemical and mechanical properties of microcomposite materials based on Fe powder and phenol-formaldehyde resin. Chem. Eng. J. 2012, 180, 343–353. [Google Scholar] [CrossRef]
- Marinca, T.F.; Neamţu, B.V.; Popa, F.; Mesaroş, A.Z.; Ciascai, I.; Chicinaş, I. Novel supermalloy/alumina type soft magnetic composite obtained by reaction spark plasma sintering of Al-Supermalloy (Ni70.5Fe18.8Mo4.7Al6) surface oxidized particles. J. Alloys Compd. 2023, 940, 168899. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Nguyen, K.D.M.; Nguyen, T.A.; No, K. The synthesis of zinc ferrite spinel: Determination of pH value in the co-precipitation step. Ceram. Int. 2022, 48, 4090–4095. [Google Scholar] [CrossRef]
- Basavanagoudra, H.; Tanakanti, R.; Patil, M.K.; Inamdar, S.R.; Goudar, K.M. Synthesis, characterization, and properties of spinel zinc ferrite nanoparticles by chemical coprecipitation technique. Macromol. Symp. 2021, 400, 2100138. [Google Scholar] [CrossRef]
- Popovici, E.J.; Muresan, L.; Hristea, A.; Indrea, E.; Vasilescu, M. Synthesis and characterisation of europium activated yttrium oxide fine powders. J. Alloys Compd. 2007, 434–435, 809–812. [Google Scholar] [CrossRef]
- Nalbandian, L.; Patrikiadou, E.; Zaspalis, V.; Patrikidou, A.; Hatzidaki, E.; Papandreou, C.N. Magnetic Nanoparticles in Medical Diagnostic Applications: Synthesis, Characterization and Proteins Conjugation. Curr. Nanosci. 2016, 12, 455–468. [Google Scholar] [CrossRef]
- Mesaros, A.; Ghitulica, C.D.; Popa, M.; Mereu, R.; Popa, A.; Petrisor, T.; Gabor, M.; Cadis, A.I.; Vasile, B. Synthesis, structural and morphological characteristics, magnetic and optical properties of Co doped ZnO nanoparticles. Ceram. Int. 2014, 40, 2835–2846. [Google Scholar] [CrossRef]
- Trivedi, M.K.; Branton, A.; Trivedi, D.; Nayak, G.; Bairwa, K.; Jana, S. Spectroscopic characterization of disodium hydrogen orthophosphate and sodium nitrate after biofield treatment. J. Chromatogr. Sep. Tech. 2015, 6, 1000282. [Google Scholar] [CrossRef]
- Ait Kerroum, M.A.; Essyed, A.; Iacovita, C.; Baaziz, W.; Ihiawakrim, D.; Mounkachi, O.; Hamedoun, M.; Benyoussef, A.; Benaissa, M.; Ersen, O. The effect of basic pH on the elaboration of ZnFe2O4 nanoparticles by co-precipitation method: Structural, magnetic and hyperthermia characterization. J. Magn. Magn. Mater. 2019, 478, 239–246. [Google Scholar] [CrossRef]
- Neamţu, B.V.; Popa, F.; Marinca, T.F.; Chicinaş, I. Soft magnetic composites based on Fe fibres and powders prepared by cold sintering process. J. Alloys Compd. 2023, 933, 167799. [Google Scholar] [CrossRef]
- Kollár, P.; Birčáková, Z.; Füzer, J.; Bureš, R.; Fáberová, M. Power loss separation in Fe-based composite materials. J. Magn. Magn. Mater. 2013, 327, 146–150. [Google Scholar] [CrossRef]
- Goldman, A. Modern Ferrite Technology, 2nd ed.; Springer: Pittsburgh, PA, USA, 2006. [Google Scholar]
ZnFe2O4 Sample | a (nm) | D (nm) |
---|---|---|
pH6 | 8.4522 | 3.8 |
pH7 | 8.4389 | 5.2 |
pH8 | 8.4498 | 5.1 |
pH10 | 8.4636 | 4.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mesaros, A.; Neamțu, B.V.; Marinca, T.F.; Popa, F.; Cupa, G.; Vasile, O.R.; Chicinaș, I. Preparation of Fe@Fe3O4/ZnFe2O4 Powders and Their Consolidation via Hybrid Cold-Sintering/Spark Plasma-Sintering. Nanomaterials 2024, 14, 149. https://doi.org/10.3390/nano14020149
Mesaros A, Neamțu BV, Marinca TF, Popa F, Cupa G, Vasile OR, Chicinaș I. Preparation of Fe@Fe3O4/ZnFe2O4 Powders and Their Consolidation via Hybrid Cold-Sintering/Spark Plasma-Sintering. Nanomaterials. 2024; 14(2):149. https://doi.org/10.3390/nano14020149
Chicago/Turabian StyleMesaros, Amalia, Bogdan Viorel Neamțu, Traian Florin Marinca, Florin Popa, Gabriela Cupa, Otilia Ruxandra Vasile, and Ionel Chicinaș. 2024. "Preparation of Fe@Fe3O4/ZnFe2O4 Powders and Their Consolidation via Hybrid Cold-Sintering/Spark Plasma-Sintering" Nanomaterials 14, no. 2: 149. https://doi.org/10.3390/nano14020149
APA StyleMesaros, A., Neamțu, B. V., Marinca, T. F., Popa, F., Cupa, G., Vasile, O. R., & Chicinaș, I. (2024). Preparation of Fe@Fe3O4/ZnFe2O4 Powders and Their Consolidation via Hybrid Cold-Sintering/Spark Plasma-Sintering. Nanomaterials, 14(2), 149. https://doi.org/10.3390/nano14020149