Tailoring the Lithium Concentration in Thin Lithium Ferrite Films Obtained by Dual Ion Beam Sputtering
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Lithium Quantification
3.2. Structural and Compositional Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dubs, C.; Surzhenko, O.; Thomas, R.; Osten, J.; Schneider, T.; Lenz, K.; Grenzer, J.; Hübner, R.; Wendler, E. Low damping and microstructural perfection of sub-40 nm-thin yttrium iron garnet films grown by liquid phase epitaxy. Phys. Rev. Mater. 2020, 4, 024416. [Google Scholar] [CrossRef]
- Krysztofk, A.; Özoğlu, S.; McMichael, R.D.; Coy, E. Effect of strain-induced anisotropy on magnetization dynamics in Y3Fe5O12 films recrystallized on a lattice-mismatched substrate. Sci. Rep. 2021, 11, 14011. [Google Scholar] [CrossRef] [PubMed]
- Emori, S.; Yi, D.; Crossley, S.; Wisser, J.J.; Balakrishnan, P.P.; Khodadadi, B.; Shafer, P.; Klewe, C.; N’Diaye, A.T.; Urwin, B.T.; et al. Ultralow Damping in Nanometer-Thick Epitaxial Spinel Ferrite Thin Films. Nano Lett. 2018, 18, 4273–4278. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.Y.; Channa, S.; Riddiford, L.J.; Wisser, J.J.; Mahalingam, K.; Bowers, C.T.; McConney, M.E.; N’Diaye, A.T.; Vailionis, A.; Cogulu, E.; et al. Ultra-thin lithium aluminate spinel ferrite films with perpendicular magnetic anisotropy and low damping. Nat. Commun. 2023, 14, 4918. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.Y.; Riddiford, L.J.; Wisser, J.J.; Emori, S.; Suzuki, Y. Ultra-low magnetic damping in epitaxial Li0.5Fe2.5O4 thin films. Appl. Phys. Lett. 2020, 117, 092407. [Google Scholar] [CrossRef]
- Boyraz, C.; Mazumdar, D.; Iliev, M.; Marinova, V.; Ma, J.; Srinivasan, G.; Gupta, A. Structural and magnetic properties of lithium ferrite thin films: Influence of substrate on the octahedral site order. Appl. Phys. Lett. 2011, 98, 012507. [Google Scholar] [CrossRef]
- Mohapatra, P.P.; Dobbidi, P. Conduction mechanism, dielectric, and magnetic investigation of lithium ferrite thin films deposited by pulsed laser deposition. Appl. Surf. Sci. 2023, 619, 156706. [Google Scholar] [CrossRef]
- Fu, Y.-P.; Lin, C.-H.; Liu, C.-W.; Yao, Y.-D. Microwave-induced combustion synthesis of Li0.5Fe2.5O4 powder and their characterization. J. Alloys Compd. 2005, 395, 247–251. [Google Scholar]
- Pardavi-Horvath, M. Microwave applications of soft ferrites. J. Magn. Magn. Mater. 2000, 215–216, 171–183. [Google Scholar] [CrossRef]
- Ernst, F.O.; Kammler, H.K.; Roessler, A.; Pratsinis, S.E.; Stark, W.J.; Ufheil, J.; Novak, P. Electrochemically active flame-made nanosized spinels: LiMn2O4, Li4Ti5O12 and LiFe5O8. Mater. Chem. Phys. 2007, 101, 372–378. [Google Scholar] [CrossRef]
- Subash, S.; Udhayakumar, S.; Kumaresan, L.; Patro, L.N.; Kumaran, V.; Kumar, E.S.; Navaneethan, M.; Kim, D.K.; Bharathi, K.K. Ordered LiFe5O8 thin films prepared by pulsed laser deposition as an anode material for all-solid thin film batteries. Electrochim. Acta 2023, 454, 142318. [Google Scholar] [CrossRef]
- Liu, R.; Pan, L.; Peng, S.; Qin, L.; Bi, J.; Wu, J.; Wu, H.; Ye, Z.-G. The magnetoelectric effect in a cubic ferrimagnetic spinel LiFe5O8 with high coupling temperature. J. Mater. Chem. C 2019, 7, 1999. [Google Scholar] [CrossRef]
- Reitz, C.; Suchomski, C.; Wang, D.; Hahnad, H.; Brezesinski, T. In situ tuning of magnetization via topotactic lithium insertion in ordered mesoporous lithium ferrite thin films. J. Mater. Chem. C 2016, 4, 8889. [Google Scholar] [CrossRef]
- Zhu, X.; Zhou, J.; Chen, L.; Guo, S.; Liu, G.; Li, R.-W.; Lu, W.D. In Situ Nanoscale Electric Field Control of Magnetism by Nanoionics. Adv. Mater. 2016, 28, 7658. [Google Scholar] [CrossRef]
- Braun, P.B. A Superstructure in Spinels. Nature 1952, 170, 1123. [Google Scholar] [CrossRef]
- Ahniyaz, A.; Fujiwara, T.; Song, S.-W.; Yoshimura, M. Low temperature preparation of β-LiFe5O8 fine particles by hydrothermal ball milling. Solid State Ion. 2002, 151, 419–423. [Google Scholar] [CrossRef]
- Gunning, R.D.; Rode, K.; Sumesh, R.G.S.; Venkatesan, M.; Coey, J.M.D.; Shvets, I.V.; Lunney, J.G. Thin films of semiconducting lithium ferrite produced by pulsed laser deposition. Appl. Surf. Sci. 2009, 255, 5245–5247. [Google Scholar] [CrossRef]
- Gao, C.; Cao, C.; Zhao, J. Structure and magnetic properties of epitaxial LiFe5O8 film with different growth temperatures. Appl. Phys. A 2019, 125, 566. [Google Scholar] [CrossRef]
- Masterson, H.J.; Lunney, J.G.; Ravinder, D.; Coey, J.M.D. Magnetic properties of (111) Li0.5Fe2.504 films. J. Magn. Magn. Mater. 1995, 140–144, 2081–2082. [Google Scholar] [CrossRef]
- Cadieu, F.J.; Rani, R.; Mendoza, W.; Peng, B.; Shaheen, S.A.; Hurben, M.J.; Patton, C.E. Static magnetic and microwave properties of Li-ferrite films prepared by pulsed laser Deposition. J. Appl. Phys. 1997, 81, 4801. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, M.; Lu, L.; Mi, S.-B.; Wang, H. Strain-tunable magnetic properties of epitaxial lithium ferrite thin film on MgAl2O4 substrates. J. Mater. Chem. C 2015, 3, 5598–5602. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, M.; Lu, L.; Mi, S.B.; Wang, H. Ultra-low temperature epitaxial growth of lithium ferrite thin films by high-pressure sputtering. CrystEngComm 2015, 17, 8256–8263. [Google Scholar] [CrossRef]
- Loukya, B.; Negi, D.S.; Sahu, R.; Pachauri, N.; Gupta, A.; Datta, R. Structural characterization of epitaxial LiFe5O8 thin films grown by chemical vapor deposition. J. Alloys Compd. 2016, 668, 187–193. [Google Scholar] [CrossRef]
- Lu, L.; Liu, K.; Zhang, R.; Cheng, S.-D.; Mi, S.-B. Epitaxial growth and interface of (111)-oriented spinel Li0.5Fe2.5O4 film on SrTiO3(001) substrate. Mater. Lett. 2023, 351, 135037. [Google Scholar] [CrossRef]
- Kaykan, L.S.; Mazurenko, J.S.; Sijo, A.K.; Makovysyn, V.I. Structural properties of magnesium-substituted lithium ferrites. Appl. Nanosci. 2020, 10, 2739–2747. [Google Scholar] [CrossRef]
- Fu, Y.-P.; Hu, S.-H. Electrical and magnetic properties of magnesium-substituted lithium ferrite. Ceram. Int. 2010, 36, 1311–1317. [Google Scholar] [CrossRef]
- O’Mahoney, D.; Channa, C.; Zheng, Y.; Vailionis, A.; Shafer, P.; N’Diaye, A.T.; Klewe, C.; Suzuki, Y. Aluminum substitution in low damping epitaxial lithium ferrite films. Appl. Phys. Lett. 2023, 123, 172405. [Google Scholar] [CrossRef]
- Redondo-Cubero, A.; Borge, M.J.G.; Gordillo, N.; Gutiérrez, P.C.; Olivares, J.; PérezCasero, R.; Ynsa, M.D. Current status and future developments of the ion beam facility at the centre of micro-analysis of materials in Madrid. Eur. Phys. J. Plus 2021, 136, 175. [Google Scholar] [CrossRef]
- Paneta, V.; Kafkarkou, A.; Kokkoris, M.; Lagoyannis, A. Differential cross-section measurements for the 7Li(p,p0)7Li, 7Li(p,p1)7Li,7Li(p,a0)4He, 19F(p,p0)19F, 19F(p,a0)16O and 19F(p,a1,2)16O reactions. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2012, 288, 53. [Google Scholar] [CrossRef]
- Gonzalez-Arrabal, R.; Panizo-Laiz, M.; Fujita, K.; Mima, K.; Yamazaki, A.; Kamiya, T.; Orikasa, Y.; Uchimoto, Y.; Sawada, H.; Okuda, C.; et al. Meso-scale characterization of lithium distribution in lithium-ion batteries using ion beam analysis techniques. J. Power Sources 2015, 299, 587–595. [Google Scholar] [CrossRef]
- Reddy, M.V.; Pecquenard, B.; Vinatier, P.; Wannek, C.; Levasseur, A.; Moretto, P. RBS and NRA analyses of lithium inserted amorphous Li1+xNiVO4 films. Nucl. Instrum. Methods Phys. Res. B 2006, 246, 397–401. [Google Scholar] [CrossRef]
- Mayer, M. SIMNRA, a simulation program for the analysis of NRA, RBS and ERDA. AIP Conf. Proc. 1999, 475, 541. [Google Scholar]
- Simonelli, L.; Marini, C.; Olszewski, W.; Ávila-Pérez, M.; Ramanan, N.; Guilera, G.; Cuarteto, V.; Klementiev, K.; Naurang, L.S. CLÆSS: The hard X-ray absorption beamline of the ALBA CELLS synchrotron. Cogent Phys. 2016, 3, 1. [Google Scholar] [CrossRef]
- Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 2005, 12, 537. [Google Scholar] [CrossRef] [PubMed]
- Caso, D.; Serrano, A.; Jaafar, M.; Prieto, P.; Kamra, A.; González-Ruano, C.; Aliev, F.G. Microwave Field-Induced Changes in Raman Modes and Magnetic Force Images of Antiferromagnetic NiO Films. Condens. Matter 2024, 9, 7. [Google Scholar] [CrossRef]
- Lorenzo-Feijoo, I.; Serrano, A.; Hernández-Gómez, C.; Cuñado, J.L.F.; Prieto, P. Influence of the Substrate on the Exchange Coupling of NiO/FeCo Bilayers. Crystals 2024, 14, 369. [Google Scholar] [CrossRef]
- Granados-Miralles, C.; Serrano, A.; Prieto, P.; Guzmán-Mínguez, J.; Prieto, J.E.; Friedel, A.M.; García-Martín, E.; Fernández, J.F.; Quesada, A. Quantifying Li-content for compositional tailoring of lithium ferrite ceramics. J. Eur. Ceram. Soc. 2023, 43, 3351–3359. [Google Scholar] [CrossRef]
- Mukherjee, S. Thin film deposition from dual ion beam sputtering system. CSI Trans. 2019, 7, 99–104. [Google Scholar] [CrossRef]
- Yamamoto, T. Assignment of pre-edge peaks in K-edge X-ray absorption spectra of 3d transition metal compounds: Electric dipole or quadrupole? X-ray Spectrom. 2008, 37, 572–584. [Google Scholar] [CrossRef]
- Wilke, M.; Partzsch, G.M.; Bernhardt, B.; Lattard, D. Determination of the iron oxidation state in basaltic glasses using XANES at the K-edge. Chem. Geol. 2005, 220, 143–161. [Google Scholar] [CrossRef]
- Rubio-Zuazo, J.; Chainani, A.; Taguchi, M.; Malterre, D.; Serrano, A.; Castro, G.R. Electronic structure of FeO, alpha-Fe2O3 and Fe3O4 epitaxial films using high-energy spectroscopies. Phys. Rev. B 2018, 97, 235148. [Google Scholar] [CrossRef]
- Abuin, M.; Serrano, A.; Chaboy, J.; García, M.A.; Carmona, N. XAS study of Mn, Fe and Cu as indicators of historical glass decay. J. Anal. At. Spectrom. 2013, 28, 1118. [Google Scholar] [CrossRef]
- Malferrari, D.; Castellini, E.; Bernini, F.; Serrano-Rubio, A.; Castro, G.R.; Sainz-Díaz, C.I.; Caleffi, M.; Brigatti, M.F.; Borsaria, M. Chemical trapping of gaseous H2S at high and low partial pressures by an iron complex immobilized inside the montmorillonite interlayer. Microporous Mesoporous Mater. 2018, 265, 8–17. [Google Scholar] [CrossRef]
- Newville, M.; Ravel, B.; Haskel, D.; Rehra, J.J.; Stern, E.A.; Yacoby, Y. Analysis of multiple-scattering XAFS data using theoretical standards. Phys. B Condens. Matter. 1995, 208–209, 154–156. [Google Scholar] [CrossRef]
- Zhou, D.; Permien, S.; Rana, J.; Krengel, M.; Sun, F.; Schumacher, G.; Bensch, W.; Banhart, J. Investigation of electronic and local structural changes during lithium uptake and release of nano-crystalline NiFe2O4 by X-ray absorption spectroscopy. J. Power Sources 2017, 342, 56–63. [Google Scholar] [CrossRef]
- Prieto, P.; Serrano, A.; Rojas-Hernandez, R.E.; Gorgojo, S.; Prieto, J.E.; Soriano, L. Spinel to disorder rock-salt structural transition on (111) nickel ferrite thin films tailored by Ni content. J. Alloys Compd. 2022, 910, 164905. [Google Scholar] [CrossRef]
- Pachauri, N.; Khodadadi, B.; Althammer, M.; Singh, A.V.; Loukya, B.; Datta, R.; Iliev, M.; Bezmaterykh, L.; Gudim, I.; Mewes, T.; et al. Study of structural and ferromagnetic resonance properties of spinel lithium ferrite (LiFe5O8) single crystals. J. Appl. Phys. 2015, 117, 233907. [Google Scholar] [CrossRef]
- Iliev, M.N.; Ivanov, V.G.; Todorov, N.D.; Marinova, V.; Abrashev, M.V.; Petrova, R.; Wang, Y.Q.; Litvinchuk, A.P. Lattice dynamics of the α and β phases of LiFe5O8. Phys. Rev. B 2011, 83, 174111. [Google Scholar] [CrossRef]
- Aytan, E.; Debnath, B.; Kargar, F.; Barlas, Y.; Lacerda, M.M.; Li, J.X.; Lake, R.K.; Shi, J.; Balandin, A.A. Spin-phonon coupling in antiferromagnetic nickel oxide. Appl. Phys. Lett. 2017, 11, 252402. [Google Scholar] [CrossRef]
- Serrano, A.; Fernandez, J.F.; Rodríguez de la Fuente, O.; García, M.A. A novel route to obtain metal and oxide nanoparticles co-existing on a substrate. Mater. Today Chem. 2017, 4, 64–72. [Google Scholar] [CrossRef]
Sample | Shell | N | R (Å) | DW (Å2) |
---|---|---|---|---|
LiFeO2 reference | Fe-O | 6 | 2.002 (2) | 0.008 (2) |
Fe-Fe | 4 | 3.001 (7) | 0.012 (2) | |
LiFe5O8 reference | Fe-O | 5.2 | 1.96 (1) | 0.010 (1) |
Fe-Fe | 4 | 3.02 (2) | 0.013 (4) | |
Fe-Fe | 6 | 3.48 (1) | 0.016 (5) | |
LFO 0 eV | Fe-O | 5.85 (7) | 1.998 (5) | 0.008 (1) |
Fe-Fe | 5.1 (3) | 3.016 (5) | 0.014 (2) | |
LFO 43 eV | Fe-O | 4.9 (9) | 1.954 (6) | 0.008 (2) |
Fe-Fe | 2.4 (4) | 3.01 (2) | 0.009 (4) | |
Fe-Fe | 4.1 (5) | 3.48 (1) | 0.011 (5) | |
LFO 48 eV | Fe-O | 5.07 (8) | 1.965 (5) | 0.008 (2) |
Fe-Fe | 3.6 (5) | 3.00 (1) | 0.012 (4) | |
Fe-Fe | 2.9 (5) | 3.47 (6) | 0.012 (6) | |
LFO 59 eV | Fe-O | 5.0 (8) | 1.974 (5) | 0.009 (2) |
Fe-Fe | 4.1 (5) | 3.00 (1) | 0.014 (4) | |
Fe-Fe | 2.6 (4) | 3.47 (2) | 0.012 (6) | |
LFO 70 eV | Fe-O | 4.7 (1) | 1.969 (6) | 0.009 (2) |
Fe-Fe | 4.7 (5) | 3.01 (1) | 0.014 (4) | |
Fe-Fe | 4.3 (4) | 3.483 (9) | 0.011 (4) | |
LFO 0 eV 1025 K | Fe-O | 5.1 (9) | 1.987 (6) | 0.008 (2) |
Fe-Fe | 3.8 (4) | 3.00 (1) | 0.010 (3) | |
Fe-Fe | 2.2 (2) | 3.50 (2) | 0.013 (1) | |
LFO 43 eV 1025 K | Fe-O | 5.1 (1) | 1.965 (6) | 0.009 (2) |
Fe-Fe | 3.4 (4) | 3.00 (2) | 0.011 (4) | |
Fe-Fe | 4.2 (5) | 3.48 (1) | 0.012 (5) | |
LFO 48 eV 1025 K | Fe-O | 5.2 (1) | 1.965 (6) | 0.009 (2) |
Fe-Fe | 3.2 (4) | 3.01 (1) | 0.010 (4) | |
Fe-Fe | 4.6 (5) | 3.49 (1) | 0.013 (5) | |
LFO 59 eV 1025 K | Fe-O | 5.0 (1) | 1.962 (8) | 0.009 (2) |
Fe-Fe | 3.4 (7) | 3.01 (3) | 0.011 (6) | |
Fe-Fe | 4.7 (9) | 3.48 (2) | 0.015 (9) | |
LFO 70 eV 1025 K | Fe-O | 5.6 (1) | 1.973 (4) | 0.011 (3) |
Fe-Fe | 5.0 (8) | 3.01 (3) | 0.014 (7) | |
Fe-Fe | 4.2 (6) | 3.46 (4) | 0.018 (8) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prieto, P.; Hernández-Gómez, C.; Román-Sánchez, S.; París-Ogáyar, M.; Gorni, G.; Prieto, J.E.; Serrano, A. Tailoring the Lithium Concentration in Thin Lithium Ferrite Films Obtained by Dual Ion Beam Sputtering. Nanomaterials 2024, 14, 1220. https://doi.org/10.3390/nano14141220
Prieto P, Hernández-Gómez C, Román-Sánchez S, París-Ogáyar M, Gorni G, Prieto JE, Serrano A. Tailoring the Lithium Concentration in Thin Lithium Ferrite Films Obtained by Dual Ion Beam Sputtering. Nanomaterials. 2024; 14(14):1220. https://doi.org/10.3390/nano14141220
Chicago/Turabian StylePrieto, Pilar, Cayetano Hernández-Gómez, Sara Román-Sánchez, Marina París-Ogáyar, Giulio Gorni, José Emilio Prieto, and Aida Serrano. 2024. "Tailoring the Lithium Concentration in Thin Lithium Ferrite Films Obtained by Dual Ion Beam Sputtering" Nanomaterials 14, no. 14: 1220. https://doi.org/10.3390/nano14141220
APA StylePrieto, P., Hernández-Gómez, C., Román-Sánchez, S., París-Ogáyar, M., Gorni, G., Prieto, J. E., & Serrano, A. (2024). Tailoring the Lithium Concentration in Thin Lithium Ferrite Films Obtained by Dual Ion Beam Sputtering. Nanomaterials, 14(14), 1220. https://doi.org/10.3390/nano14141220