A Rapid, Efficient Method for Anodic Aluminum Oxide Membrane Room-Temperature Multi-Detachment from Commercial 1050 Aluminum Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ku, C.A.; Yu, C.Y.; Hung, C.W.; Chung, C.K. Advances in the Fabrication of Nanoporous Anodic Aluminum Oxide and Its Applications to Sensors: A Review. Nanomaterials 2023, 13, 2853. [Google Scholar] [CrossRef]
- Vakilinejad, A.; Dubois, E.; Michot, L.; Jardat, M.; Lairez, D.; Durand-Vidal, S.; Guibert, C.; Jouault, N. Electrical surface properties of nanoporous alumina membranes: Influence of nanochannels’ curvature, roughness and composition studied via electrokinetic experiments. Phys. Chem. Chem. Phys. 2023, 25, 28150–28161. [Google Scholar] [CrossRef]
- Dong, J.; Wang, Y.; Wang, Q.; Cao, Y.; Han, Q.; Gao, W.; Wand, Y.; Qi, J.; Sun, M. Nanoscale engineering of ring-mounted nanostructure around AAO nanopores for highly sensitive and reliable SERS substrates. Nanotechnology 2022, 33, 135501. [Google Scholar] [CrossRef]
- Dong, J.; Li, C.; Wang, Y.; Fan, Y.; Han, Q.; Gao, W.; Wang, Y.; Ren, K.; He, E. Fabrication of complexed nanostructure using AAO template for ultrasensitive SERS detection. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 312, 124044. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.; Wang, S.; Muhammad, M.; Zhu, C.; Sun, K.; Huang, Q. Preparation of transparent SERS substrates based on the stepwise anodization potential AAO-template approach for rapid detection of trace pesticide residues. Opt. Mater. 2024, 149, 114961. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, Z.; Li, C.; Cao, J.; Buijnsters, J.G. Templated Synthesis of Diamond Nanopillar Arrays Using Porous Anodic Aluminium Oxide (AAO) Membranes. Nanomaterials 2023, 13, 888. [Google Scholar] [CrossRef] [PubMed]
- Tu, K.T.; Chung, C.K. Enhancement of Surface Raman Spectroscopy Performance by Silver Nanoparticles on Resin Nanorods Arrays from Anodic Aluminum Oxide Template. J. Electrochem. Soc. 2017, 164, B3081–B3086. [Google Scholar] [CrossRef]
- Cortés-Valadez, P.J.; Baños-López, E.; Hernández-Rodríguez, Y.M.; Cigarroa-Mayorga, O.E. Bryophyte-Bioinspired Nanoporous AAO/C/MgO Composite for Enhanced CO2 Capture: The Role of MgO. Nanomaterials 2024, 14, 658. [Google Scholar] [CrossRef]
- Chung, C.K.; Khor, O.K.; Syu, C.J.; Chen, S.W. Effect of oxalic acid concentration on the magnetically enhanced capacitance and resistance of AAO humidity sensor. Sens. Actuators B Chem. 2015, 210, 69–74. [Google Scholar] [CrossRef]
- Ku, C.A.; Chung, C.K. Advances in humidity nanosensors and their application. Sensors 2023, 23, 2328. [Google Scholar] [CrossRef]
- Xiao, S.; He, Y.; Lu, Y.; Niu, X.; Li, Q.; Wu, J.; Luo, D.; Tian, F.; Wan, G.; Liu, H. An ultrasensitive flexible pressure, temperature, and humidity sensor based on structurally adjustable nano-through-hole array films. J. Mater. Chem. C 2023, 11, 12685–12697. [Google Scholar] [CrossRef]
- Wang, K.; Zhou, C.; Zhou, H.; Jiang, M.; Chen, G.; Wang, C.; Zhang, Z.; Zhao, X.; Jiang, L.M.; Zhou, Z. Comparison on biological nutrient removal and microbial community between full-scale anaerobic/anoxic/aerobic process and its upgrading processes. Bioresour. Technol. 2023, 374, 128757. [Google Scholar] [CrossRef] [PubMed]
- You, J.; Tang, S.; Zong, Y.; Shan, H.; Wang, J.; Fu, C. Effects of adding different ratios of residual sludge and food waste co-anaerobic fermentation liquid to AAO wastewater treatment process. J. Water Process Eng. 2023, 53, 103735. [Google Scholar] [CrossRef]
- Lin, D.Y.; Yu, C.Y.; Ku, C.A.; Chung, C.K. Design, Fabrication, and Applications of SERS Substrates for Food Safety Detection: Review. Micromachines 2023, 14, 1343. [Google Scholar] [CrossRef] [PubMed]
- Manzoor, S.; Ashraf, M.W.; Tayyaba, S.; Akhlaq, M. Simulation and Analysis of Microfluidic Flow Rate from AAO Membrane. In International Workshop Soft Computing Applications; Springer International Publishing: Cham, Switzerland, 2020; pp. 548–555. [Google Scholar]
- Yang, J.J.; Yin, S.Y.; Fan, C.H.; Ou, L.; Wang, J.H.; Peng, H.; Wang, B.W.; Luo, D.; Dong, S.Y.; Zhang, Z.Y. Effect of voltage on structure and properties of 2024 aluminum alloy surface anodized aluminum oxide films. Surf. Coat. Technol. 2024, 479, 130508. [Google Scholar]
- Yun, J.; Lee, S.J. Lubricant-infused anodic aluminum oxide surface (AAO-LIS) for durable slipperiness under harsh conditions. Surf. Coat. Technol. 2024, 477, 130283. [Google Scholar] [CrossRef]
- Hong, Y.K.; Kim, B.H.; Kim, D.I.; Park, D.H.; Joo, J. High-yield and environment-minded fabrication of nanoporous anodic aluminum oxide templates. RSC Adv. 2015, 5, 26872–26877. [Google Scholar] [CrossRef]
- Cote, L.J.; Cruz-Silva, R.; Huang, J. Flash reduction and patterning of graphite oxide and its polymer composite. J. Am. Chem. Soc. 2015, 131, 11027–11032. [Google Scholar] [CrossRef]
- Lv, L.; Fan, Y.; Chen, Q.; Zhao, Y.; Hu, Y.; Zhang, Z. Three-dimensional multichannel aerogel of carbon quantum dots for high-performance supercapacitors. Nanotechnology 2014, 25, 235401. [Google Scholar] [CrossRef]
- Shi, X.; Xiao, A.; Zhang, C.; Wang, Y. Growing covalent organic frameworks on porous substrates for molecule-sieving membranes with pores tunable from ultra-to nanofiltration. J. Membr. Sci. 2019, 576, 116–122. [Google Scholar] [CrossRef]
- Cai, Y.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. A smart membrane with antifouling capability and switchable oil wettability for high-efficiency oil/water emulsions separation. J. Membr. Sci. 2018, 555, 69–77. [Google Scholar] [CrossRef]
- Li, J.; Yan, H.; Tan, X.; Lu, Z.; Han, H. Cauliflower-inspired 3D SERS substrate for multiple mycotoxins detection. Anal. Chem. 2019, 91, 3885–3892. [Google Scholar] [CrossRef] [PubMed]
- Celik, M.; Altuntas, S.; Buyukserin, F. Fabrication of nanocrater-decorated anodic aluminum oxide membranes as substrates for reproducibly enhanced SERS signals. Sens. Actuators B Chem. 2018, 255, 2871–2877. [Google Scholar] [CrossRef]
- Chien, Y.C.; Weng, H.C. Cost-effective technique to fabricate a tubular through-hole anodic aluminum oxide membrane using one-step anodization. Microelectron. Eng. 2021, 247, 111589. [Google Scholar] [CrossRef]
- Xu, Q.; Lan, T.; Wang, Z.; Sun, C.; Peng, Q.; Sun, H. Preparation and growth mechanism of a gold-coloured Ag@ AAO composite film with no angular dependence. Appl. Surf. Sci. 2021, 553, 149592. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, M.; Zhang, Y.; Xu, T.; Liu, W. A facile approach to formation of through-hole porous anodic aluminum oxide film. Mater. Lett. 2005, 59, 40–43. [Google Scholar] [CrossRef]
- Liang, J.; Chik, H.; Yin, A.; Xu, J. Two-dimensional lateral superlattices of nanostructures: Nonlithographic formation by anodic membrane template. J. Appl. Phys. 2002, 91, 2544–2546. [Google Scholar] [CrossRef]
- Santos, A.; Vojkuvka, L.; Pallarés, J.; Ferré-Borrull, J.; Marsal, L.F. In situ electrochemical dissolution of the oxide barrier layer of porous anodic alumina fabricated by hard anodization. J. Electroanal. Chem. 2009, 632, 139–142. [Google Scholar] [CrossRef]
- Owens, A.G.; Veys-Renaux, D.; Rocca, E. Reverse scan polarization of anodic aluminum oxide until detachment in sulfuric acid: Mechanisms and morphologies. Electrochim. Acta 2002, 435, 141361. [Google Scholar] [CrossRef]
- Tian, M.; Xu, S.; Wang, J.; Kumar, N.; Wertz, E.; Li, Q. Penetrating the oxide barrier in situ and separating freestanding porous anodic alumina films in one step. Nano Lett. 2005, 5, 697–703. [Google Scholar] [CrossRef]
- Choudhary, E.; Szalai, V. Two-step cycle for producing multiple anodic aluminum oxide (AAO) films with increasing long-range order. RSC Adv. 2016, 6, 67992–67996. [Google Scholar] [CrossRef]
- Zhao, S.; Chan, K.; Yelon, A.; Veres, T. Preparation of open-through anodized aluminium oxide films with a clean method. Nanotechnology 2007, 18, 245304. [Google Scholar] [CrossRef]
- Yuan, J.H.; Chen, W.; Hui, R.J.; Hu, Y.L.; Xia, X.H. Mechanism of one-step voltage pulse detachment of porous anodic alumina membranes. Electrochim. Acta 2006, 51, 589–4595. [Google Scholar] [CrossRef]
- Brudzisz, A.; Brzózka, A.; Sulka, G.D. Effect of processing parameters on pore opening and mechanism of voltage pulse detachment of nanoporous anodic alumina. Electrochim. Acta 2015, 178, 374–384. [Google Scholar] [CrossRef]
- Yanagishita, T.; Masuda, H. High-throughput fabrication process for highly ordered through-hole porous alumina membranes using two-layer anodization. Electrochim. Acta 2015, 184, 80–85. [Google Scholar] [CrossRef]
- Zhang, T.; Ling, Z.; Li, Y.; Hu, X. A New Method for Highly Efficient Fabrication of Through-Hole Porous Anodic Alumina Membranes. ECS J. Solid State Sci. Technol. 2017, 6, 862–865. [Google Scholar] [CrossRef]
- Lira, H.D.L.; Paterson, R. New and modified anodic alumina membranes: Part III. Preparation and characterisation by gas diffusion of 5 nm pore size anodic alumina membranes. J. Membr. Sci. 2002, 206, 375–387. [Google Scholar] [CrossRef]
- Brudzisz, A.; Sulka, G.D.; Brzózka, A. Through-hole AAO-SA templates with a small pore diameter prepared by the voltage pulse detachment method. Microporous Mesoporous Mater. 2019, 283, 73–81. [Google Scholar] [CrossRef]
- Chung, C.K.; Tsai, C.H.; Wang, Z.W. Enhancement of Surface Roughness and Growth Morphology of Nanoporous Anodic Alumina from Commercially Aluminum Alloy 1050 Using Two-Step Electrochemical Polishing. J. Electrochem. Soc. 2018, 165, E498–E503. [Google Scholar] [CrossRef]
- Chung, C.K.; Ku, C.A.; Wu, Z.N. A high-and-rapid-response capacitive humidity sensor of nanoporous anodic alumina by one-step anodizing commercial 1050 aluminum alloy and its enhancement mechanism. Sens. Actuators B Chem 2021, 343, 130156. [Google Scholar] [CrossRef]
Ref. | Method | Al Purity | Anodization Step/Solution | AAO Fabrication Time (h) | Detachment Time | Photographs of Complete Membrane | Repetition of AAO Membrane |
---|---|---|---|---|---|---|---|
[22] (Commrcial membrane) | Chemical etching method | 99.999% | NA | NA | NA | Complete | NA |
[18] | Reverse-bias voltage method | 99.999% | two-step/Sulfuric acid | 25 | 20 min | Complete | 6 times |
[31] | Reverse-bias voltage method | 99.999% | two-step/ Sulfuric acid | 44 | 13 min | Local * | NA |
[32] | Reverse-bias voltage method | 99.999% | two-step/oxalic acid | 8–32 | 30–90 s | Local * | 5 times |
[33] | Pulse voltage method | 99.999% | two-step/oxalic acid | 28 | 3 s (1 cycle) | Local * | NA |
[34] | Pulse voltage method | 99.99% | two-step/oxalic acid | 5 | 3 s (1 cycle) | Local * | NA |
[35] | Pulse voltage method | 99.999% | two-step/oxalic acid | 5 | 3–60 s (1–10 cycle) | Local * | NA |
[39] | Pulse voltage method | 99.999% | two-step/sulfuric acid | 12–20 | 3–60 s (1–10 cycle) | Partial | NA |
[36] | Two-layer anodization method | 99.999% | three-step/sulfuric acid | 13.5 | 15 min | Complete | 10 times |
[37] | Two-layer anodization method | 99.999% | three-step/oxalic acid | 27 | 75 min | Complete | 4 times |
Ours | Short one-time potentiostatic method | Al 1050 alloy (~99.5%) | one-step/oxalic acid | 3 | 20 s | Complete | 5 times |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ku, C.-A.; Hung, C.-W.; Chung, C.-K. A Rapid, Efficient Method for Anodic Aluminum Oxide Membrane Room-Temperature Multi-Detachment from Commercial 1050 Aluminum Alloy. Nanomaterials 2024, 14, 1216. https://doi.org/10.3390/nano14141216
Ku C-A, Hung C-W, Chung C-K. A Rapid, Efficient Method for Anodic Aluminum Oxide Membrane Room-Temperature Multi-Detachment from Commercial 1050 Aluminum Alloy. Nanomaterials. 2024; 14(14):1216. https://doi.org/10.3390/nano14141216
Chicago/Turabian StyleKu, Chin-An, Chia-Wei Hung, and Chen-Kuei Chung. 2024. "A Rapid, Efficient Method for Anodic Aluminum Oxide Membrane Room-Temperature Multi-Detachment from Commercial 1050 Aluminum Alloy" Nanomaterials 14, no. 14: 1216. https://doi.org/10.3390/nano14141216
APA StyleKu, C.-A., Hung, C.-W., & Chung, C.-K. (2024). A Rapid, Efficient Method for Anodic Aluminum Oxide Membrane Room-Temperature Multi-Detachment from Commercial 1050 Aluminum Alloy. Nanomaterials, 14(14), 1216. https://doi.org/10.3390/nano14141216