Graphene and Vanadium Dioxide-Based Terahertz Absorber with Switchable Multifunctionality for Band Selection Applications
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Broadband Absorption
3.2. Double Narrowband Absorption
3.3. Influence of the Conductivity of VO2 Film
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yen, T.J.; Padilla, W.J.; Fang, N.; Vier, D.C.; Smith, D.R.; Pendry, J.B.; Basov, D.N.; Zhang, X. Terahertz magnetic response from artificial materials. Science 2004, 303, 1494–1496. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.R.; Padilla, W.J.; Vier, D.C.; Nemat-Nasser, S.C.; Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 2000, 84, 4184–4187. [Google Scholar] [CrossRef] [PubMed]
- Pendry, J.B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 2000, 85, 3966–3969. [Google Scholar] [CrossRef] [PubMed]
- Argyropoulos, C.; Le, K.Q.; Mattiucci, N.; D’Aguanno, G.; Alù, A. Broadband absorbers and selective emitters based on plasmonic brewster metasurfaces. Phys. Rev. B Condens. Matter 2012, 87, 2329–2337. [Google Scholar] [CrossRef]
- Zheng, Y.L.; Chen, P.P.; Yang, H.M.; Ding, J.Y.; Zhou, Y.W.; Tang, Z.; Zhou, X.H.; Li, Z.F.; Li, N.; Chen, X.S.; et al. High-responsivity and polarization-discriminating terahertz photodetector based on plasmonic resonance. Appl. Phys. Lett. 2019, 114, 091105. [Google Scholar] [CrossRef]
- Yang, H.; Li, G.H.; Cao, G.T.; Zhao, Z.Y.; Chen, J.; Ou, K.; Chen, X.S.; Lu, W. Broadband polarization resolving based on dielectric metalenses in the near-infrared. Opt. Express 2018, 26, 5632–5643. [Google Scholar] [CrossRef] [PubMed]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect metamaterial absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef] [PubMed]
- Akyildiz, I.F.; Jornet, J.M.; Han, C. Terahertz band: Next frontier for wireless communications. Phys. Commun. 2014, 12, 16–32. [Google Scholar] [CrossRef]
- Federici, J.; Moeller, L. Review of terahertz and subterahertz wireless communications. J. Appl. Phys. 2010, 107, 111101. [Google Scholar] [CrossRef]
- Fitzgerald, A.J.; Berry, E.; Zinovev, N.N.; Walker, G.C.; Smith, M.A.; Chamberlain, J.M. An introduction to medical imaging with coherent terahertz frequency radiation. Phys. Med. Biol. 2002, 47, R67–R84. [Google Scholar] [CrossRef]
- Amenabar, I.; Lopez, F.; Mendikute, A. In introductory review to THz non-destructive testing of composite mater. J. Infrared Milli Terahz Waves. 2013, 34, 152–169. [Google Scholar] [CrossRef]
- Cheng, R.; Zhou, Y.X.; Liang, B.; Pan, J.S.; Luo, Q.; Liu, J.Q. Thermal and electrical switchable wide-angle multi-band terahertz absorber. Opt. Express 2024, 32, 12476–12495. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Wu, C.; Ren, Y. Broadband terahertz metamaterial absorber based on graphene resonators with perfect absorption. Results Phys. 2021, 26, 104466. [Google Scholar] [CrossRef]
- Mishra, N.; Choudhary, D.K.; Chowdhury, R.; Kumari, K.; Chaudhary, R.K. An Investigation on Compact Ultra-Thin Triple Band Polarization Independent Metamaterial Absorber for Microwave Frequency Applications. IEEE Access 2017, 5, 4370–4376. [Google Scholar] [CrossRef]
- Costa, F.; Monorchio, A. Electromagnetic Absorbers based on High-Impedance Surfaces: From ultra-narrowband to ultra-wideband absorption. Adv. Electromagn. 2012, 1, 7–12. [Google Scholar] [CrossRef]
- Zhao, B.; Huang, C.; Yang, J.; Song, J.; Guan, C.; Luo, X. Broadband Polarization-Insensitive Tunable Absorber Using Active Frequency Selective Surface. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 982–986. [Google Scholar] [CrossRef]
- Korani, N.; Danaie, M. A plasmonic terahertz perfect absorber based on L-shaped graphene patches and gold rods. Appl. Phys. A 2023, 129, 806. [Google Scholar] [CrossRef]
- Du, X.M.; Yan, F.P.; Wang, W.; Tan, S.Y.; Zhang, L.N.; Bai, Z.Y.; Zhou, H.; Hou, Y.F. A polarization- and angle-insensitive broadband tunable metamaterial absorber using patterned graphene resonators in the terahertz band. Opt. Laser Technol. 2020, 132, 106513. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, R.; Ouyang, Z.B. Terahertz absorber with dynamically switchable dual-broadband based on a hybrid metamaterial with vanadium dioxide and graphene. Opt. Express 2021, 29, 20839–20850. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, Y.K.; Wang, G.C.; Jiang, W.X.; Cui, T.J. Tunable triple-band millimeter-wave absorbing metasurface based on nematic liquid crystal. AIP Adv. 2022, 12, 015127. [Google Scholar] [CrossRef]
- Liu, K.; Tu, Z.; Tang, X.; Li, Z.; Chen, F.; Yang, W.; Wang, B. High-sensitivity triple-band absorber based on graphene rectangular split ring resonator and cross-structure. Plasmonics 2024, 19, 1291–1302. [Google Scholar] [CrossRef]
- Lin, Z.; Xu, Z.; Liu, P.; Liang, Z.; Lin, Y.-S. Polarization-sensitive terahertz resonator using asymmetrical F-shaped metamaterial. Opt. Laser Technol. 2020, 121, 105826. [Google Scholar] [CrossRef]
- Ning, R.; Xiao, Z.; Chen, Z.; Huang, W. Tri-control large angle electromagnetically induced reflection in metamaterials with graphene and vanadium dioxide. AIP Adv. 2020, 10, 085323. [Google Scholar] [CrossRef]
- Wang, B.X.; Wang, G.Z.; Sang, T. Simple design of novel triple-band terahertz metamaterial absorber for sensing application. J. Phys. D Appl. Phys. 2016, 49, 165307. [Google Scholar] [CrossRef]
- Zhang, C.; Yin, S.; Long, C.; Dong, B.W.; He, D.; Cheng, Q.; Cheng, Q. Hybrid Metamaterial Absorber for Ultra-Low and Dual-Broadband Absorption. Opt. Express 2021, 29, 14078–14086. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhong, R.B.; Lian, Z.; Bu, C.; Liu, S.G. Dynamically tunable band stop filter enabled by the metal-graphene metamaterials. Sci. Rep. 2018, 8, 2828. [Google Scholar] [CrossRef] [PubMed]
- Samy, O.; Belmoubarik, M.; Otsuji, T.; El Moutaouakil, A. A Voltage-Tuned Terahertz Absorber Based on MoS2/Graphene Nanoribbon Structure. Nanomaterials 2023, 13, 1716. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Song, Z. Tunable isotropic absorber with phase change material VO2. IEEE T. Nanotechnol. 2020, 19, 197–200. [Google Scholar] [CrossRef]
- Pitchappa, P.; Kumar, A.; Prakash, S.; Jani, H.; Venkatesan, T.; Singh, R. Chalcogenide phase change material for active terahertz photonics. Adv. Mater. 2019, 31, 1808157. [Google Scholar] [CrossRef]
- Zheng, C.; Li, J.; Wang, G.; Wang, S.; Li, J.; Zhao, H.; Zang, H.; Zhang, Y.; Zhang, Y.; Yao, J. Fine manipulation of terahertz waves via all-silicon metasurfaces with an independent amplitude and phase. Nanoscale 2021, 13, 5809–5816. [Google Scholar] [CrossRef]
- Jiang, M.; Song, Z.; Liu, Q.H. Ultra-broadband wide-angle terahertz absorber realized by a doped silicon metamaterial. Opt. Commu. 2020, 471, 125835. [Google Scholar] [CrossRef]
- He, X.; Lin, F.; Liu, F.; Shi, W. Tunable strontium titanate terahertz all-dielectric metamaterials. J. Phys. D Appl. Phys. 2020, 53, 155105. [Google Scholar] [CrossRef]
- Dong, B.; Ma, H.; Wang, J.; Shi, P.; Li, J.; Zhu, L.; Lou, J.; Feng, M.; Qu, S. A thermally tunable THz metamaterial frequency-selective surface based on barium strontium titanate thin film. J. Phys. D Appl. Phys. 2018, 52, 045301. [Google Scholar] [CrossRef]
- Abajo, F.J.G.D. Graphene Plasmonics: Challenges and Opportunities. ACS Photonics 2014, 1, 135–152. [Google Scholar] [CrossRef]
- Fang, Z.Y.; Thongrattanasiri, S.; Schlather, A.; Liu, Z.; Ma, L.L.; Wang, Y.M.; Ajayan, P.M.; Nordlander, P.; Halas, N.J.; Abajo, F.J.G. Gated tunability and hybridization of localized plasmons in nanostructured graphene. ACS Nano 2013, 7, 2388–2395. [Google Scholar] [CrossRef] [PubMed]
- Park, D.J.; Shin, J.H.; Park, K.H.; Ryu, H.C. Electrically controllable THz asymmetric split loop resonator with an outer square loop based on VO2. Opt. Express 2018, 26, 17397–17406. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Fan, L. Development of a tunable terahertz absorber based on temperature control. Microw. Opt. Technol. Lett. 2020, 62, 1681–1685. [Google Scholar]
- Tian, X.; Li, Z.Y. An optically-triggered switchable mid-infrared perfect absorber based on phase-change material of vanadium dioxide. Plasmonics 2018, 13, 1393–1402. [Google Scholar] [CrossRef]
- Xu, K.; Li, J.X.; Zhang, A.X.; Chen, Q. Tunable multi-band terahertz absorber using a single-layer square graphene ring structure with T-shaped graphene strips. Opt. Express 2020, 28, 11482–11492. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, Y.; Ye, L.; Li, Y.; Xu, R. Switchable and tunable terahertz metamaterial absorber with broadband and multi-band absorption. Opt. Express 2020, 28, 38626–38637. [Google Scholar] [CrossRef]
- Galiffi, E.; Pendry, J.B.; Huidobro, P.A. Broadband tunable THz absorption with singular graphene metasurfaces. ACS Nano 2018, 12, 1006–1013. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, B.S.; Yan, R.; Kelly, M.M.; Fang, T.; Tahy, K.; Hwang, W.S.; Jena, D.; Liu, L.; Xing, H.G. Broadband graphene terahertz modulators enabled by intraband transitions. Nat. Commun. 2012, 3, 780. [Google Scholar] [CrossRef] [PubMed]
- Asgari, S.; Fabritius, T. Multi-band terahertz metamaterial absorber composed of concentric square patch and ring resonator array. Opt. Contin. 2024, 3, 148–163. [Google Scholar] [CrossRef]
- Li, J.; Chen, X.; Yi, Z.; Yang, H.; Tang, Y.; Yi, Y.; Yao, W.; Wang, J.; Yi, Y. Broadband solar energy absorber based on monolayer molybdenum disulfide using tungsten elliptical arrays. Mater. Today Energy 2020, 16, 100390. [Google Scholar] [CrossRef]
- Chen, H.T. Interference theory of metamaterial perfect absorbers. Opt. Express 2012, 20, 7165–7172. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Qiu, X.; Citrin, D.S.; Hou, J.; Yang, C.Y.; Cao, Z.Z. Dynamically switchable tri-functional THz-integrated metamaterial absorber based on VO2-graphene. Opt. Laser Technol. 2023, 165, 109609. [Google Scholar] [CrossRef]
- Zhang, B.; Xu, K.D. Switchable and tunable bifunctional THz metamaterial absorber. J. Opt. Soc. Am. B 2022, 39, A52–A60. [Google Scholar] [CrossRef]
- Wang, L.S.; Xia, D.Y.; Fu, Q.H.; Wang, Y.; Ding, X.Y. A Photoexcited Switchable Dual-Function Metamaterial Absorber for Sensing and Wideband Absorption at THz Band. Nanomaterials 2022, 12, 2375. [Google Scholar] [CrossRef]
- Feng, J.L.; Wu, L.S.; Mao, J.F. Switchable broadband/narrowband absorber based on a hybrid metasurface of graphene and metal structures. Opt. Express 2023, 31, 12220–12231. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, G.; Wei, J.; Miao, Y.; Zhang, W.; Wu, K.; Wang, Q. Ultrahigh-Q Polarization-Independent Terahertz Metamaterial Absorber Using Pattern-Free Graphene for Sensing Applications. Nanomaterials 2024, 14, 605. [Google Scholar] [CrossRef]
- Gao, P.P.; Sun, J.F.; Li, W.X.; Su, C.X.; Sun, Z.Y.; Xia, F.; Zhang, K.; Dong, L.F.; Yun, M.J. Multifunctional and dynamically tunable coherent perfect absorber based on InSb and graphene metasurface. Results Phys. 2023, 52, 106797. [Google Scholar] [CrossRef]
- Hasankhani, M.; Vahed, H.; Bemani, M. Switchable and tunable terahertz metamaterial absorber based on graphene and VO2 resonator with ultra-broadband and multi-band absorption. Opt. Commun. 2024, 562, 130567. [Google Scholar] [CrossRef]
Parameter | Description | Numerical Value |
---|---|---|
Px | Period of unit cell in the x-direction | 38 μm |
Py | Period of unit cell in the y-direction | 38 μm |
hd0 | Spacer of the two graphene layers | 2 μm |
hd1 | Thickness of the first Topas layer | 26 μm |
hd2 | Thickness of the second Topas layer | 11 μm |
hVO2 | Thickness of the VO2 layer | 2 μm |
w1 | Distances from the unit boundary of the connected square graphene layers | 4.5 μm |
w2 | 18.5 μm | |
w3 | 4 μm | |
w4 | 15 μm |
Reference | Functionality | Active Material | Tunning Method |
---|---|---|---|
[46] | Low-, high-, and multiband broadband | Graphene and VO2 | Temperature and voltage |
[47] | Multiband (six peaks) and broadband | Graphene and VO2 | Temperature and voltage |
[48] | Sensing and broadband | Si | Pump power |
[49] | Broadband and narrowband | Graphene | voltage |
[50] | Single narrowband and sensing | Graphene | Voltage |
[51] | Dual-band and broadband | InSb and graphene | Temperature and voltage |
[52] | Multiband (three peaks) and broadband | Graphene and VO2 | Temperature and voltage |
This study | Broadband and dual narrowband; single narrowband and either–or band selector | Graphene and VO2 | Temperature and voltage |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Hu, L.; Liu, M. Graphene and Vanadium Dioxide-Based Terahertz Absorber with Switchable Multifunctionality for Band Selection Applications. Nanomaterials 2024, 14, 1200. https://doi.org/10.3390/nano14141200
Liu Y, Hu L, Liu M. Graphene and Vanadium Dioxide-Based Terahertz Absorber with Switchable Multifunctionality for Band Selection Applications. Nanomaterials. 2024; 14(14):1200. https://doi.org/10.3390/nano14141200
Chicago/Turabian StyleLiu, Yan, Lingxi Hu, and Ming Liu. 2024. "Graphene and Vanadium Dioxide-Based Terahertz Absorber with Switchable Multifunctionality for Band Selection Applications" Nanomaterials 14, no. 14: 1200. https://doi.org/10.3390/nano14141200
APA StyleLiu, Y., Hu, L., & Liu, M. (2024). Graphene and Vanadium Dioxide-Based Terahertz Absorber with Switchable Multifunctionality for Band Selection Applications. Nanomaterials, 14(14), 1200. https://doi.org/10.3390/nano14141200