Ru/GCN Nanocomposite as an Efficient Catalyst for Hydrogen Generation from Sodium Hypophosphite
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Synthesis of Graphitic Carbon Nitride (GCN)
2.2. Synthesis of Ru/GCN
2.3. Hypophosphite Decomposition Reaction for Release of H2
3. Results and Discussion
3.1. Material Characterization
3.2. Catalytic Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Balat, M. Potential Importance of Hydrogen as a Future Solution to Environmental and Transportation Problems. Int. J. Hydrogen Energy 2008, 33, 4013–4029. [Google Scholar] [CrossRef]
- Claxton, L.D. The History, Genotoxicity and Carcinogenicity of Carbon-Based Fuels and Their Emissions: Part 4—Alternative Fuels. Mutat. Res. Rev. Mutat. Res. 2015, 763, 86–102. [Google Scholar] [CrossRef] [PubMed]
- Bednarczyk, J.L.; Lúscí, S.; Nski, L.; Brzozowska-Rup, K.; Olabi, A.-G.; Makieła, K.; Zej Mazur, B.; Głowacki, J. The Impact of Renewable Energy Supply on Economic Growth and Productivity. Energies 2022, 15, 4808. [Google Scholar] [CrossRef]
- Deng, Z.-Y.; Ferreira, J.M.F.; Sakka, Y. Hydrogen-generation Materials for Portable Applications. J. Am. Ceram. Soc. 2008, 91, 3825–3834. [Google Scholar] [CrossRef]
- Guan, D.; Wang, B.; Zhang, J.; Shi, R.; Jiao, K.; Li, L.; Wang, Y.; Xie, B.; Zhang, Q.; Yu, J.; et al. Hydrogen Society: From Present to Future. Energy Environ. Sci. 2023, 16, 4926–4943. [Google Scholar] [CrossRef]
- Armaroli, N.; Balzani, V. The Hydrogen Issue. ChemSusChem 2011, 4, 21–36. [Google Scholar] [CrossRef] [PubMed]
- San Marchi, C.; Hecht, E.S.; Ekoto, I.W.; Groth, K.M.; LaFleur, C.; Somerday, B.P.; Mukundan, R.; Rockward, T.; Keller, J.; James, C.W. Overview of the DOE Hydrogen Safety, Codes and Standards Program, Part 3: Advances in Research and Development to Enhance the Scientific Basis for Hydrogen Regulations, Codes and Standards. Int. J. Hydrogen Energy 2017, 42, 7263–7274. [Google Scholar] [CrossRef]
- Treigerman, Z.; Sasson, Y. Further Observations on the Mechanism of Formic Acid Decomposition by Homogeneous Ruthenium Catalyst. ChemistrySelect 2017, 2, 5816–5823. [Google Scholar] [CrossRef]
- Wang, X.; Meng, Q.; Gao, L.; Jin, Z.; Ge, J.; Liu, C.; Xing, W. Recent Progress in Hydrogen Production from Formic Acid Decomposition. Int. J. Hydrogen Energy 2018, 43, 7055–7071. [Google Scholar] [CrossRef]
- Wang, Z.-L.; Yan, J.-M.; Ping, Y.; Wang, H.-L.; Zheng, W.-T.; Jiang, Q. An Efficient CoAuPd/C Catalyst for Hydrogen Generation from Formic Acid at Room Temperature. Angew. Chem. 2013, 125, 4502–4505. [Google Scholar] [CrossRef]
- Zaidman, B.; Wiener, H.; Sasson, Y. Formate Salts as Chemical Carriers in Hydrogen Storage and Transportation. Int. J. Hydrogen Energy 1986, 11, 341–347. [Google Scholar] [CrossRef]
- Horváth, H.; Papp, G.; Kovács, H.; Kathó, Á.; Joó, F. Iridium(I)–NHC-Phosphine Complex-Catalyzed Hydrogen Generation and Storage in Aqueous Formate/Bicarbonate Solutions Using a Flow Reactor—Effective Response to Changes in Hydrogen Demand. Int. J. Hydrogen Energy 2019, 44, 28527–28532. [Google Scholar] [CrossRef]
- Shirman, R.; Bahuguna, A.; Sasson, Y. Effect of Precursor on the Hydrogen Evolution Activity and Recyclability of Pd-Supported Graphitic Carbon Nitride. Int. J. Hydrogen Energy 2021, 46, 36210–36220. [Google Scholar] [CrossRef]
- Mahmoodi, K.; Alinejad, B. Enhancement of Hydrogen Generation Rate in Reaction of Aluminum with Water. Int. J. Hydrogen Energy 2010, 35, 5227–5232. [Google Scholar] [CrossRef]
- Xie, G.; Zhang, K.; Guo, B.; Liu, Q.; Fang, L.; Gong, J.R. Graphene-Based Materials for Hydrogen Generation from Light-Driven Water Splitting. Adv. Mater. 2013, 25, 3820–3839. [Google Scholar] [CrossRef] [PubMed]
- Shirman, R.; Sasson, Y. Hydrogen Formation from Water with Various Reducing Metals Catalyzed by In Situ-Generated Nickel Nanoparticles. Hydrogen 2024, 5, 14. [Google Scholar] [CrossRef]
- Rao, N.; Lele, A.K.; Patwardhan, A.W. Optimization of Liquid Organic Hydrogen Carrier (LOHC) Dehydrogenation System. Int. J. Hydrogen Energy 2022, 47, 28530–28547. [Google Scholar] [CrossRef]
- Shirvani, S.; Hartmann, D.; Smith, K.J. Two-Dimensional Mo2C: An Efficient Promoter for Hydrogen Storage and Release from a Liquid Organic Hydrogen Carrier. Int. J. Hydrogen Energy 2023, 48, 12309–12320. [Google Scholar] [CrossRef]
- Tarasov, B.P.; Fursikov, P.V.; Volodin, A.A.; Bocharnikov, M.S.; Shimkus, Y.Y.; Kashin, A.M.; Yartys, V.A.; Chidziva, S.; Pasupathi, S.; Lototskyy, M.V. Metal Hydride Hydrogen Storage and Compression Systems for Energy Storage Technologies. Int. J. Hydrogen Energy 2021, 46, 13647–13657. [Google Scholar] [CrossRef]
- Luo, N.; Cao, F.; Zhao, X.; Xiao, T.; Fang, D. Thermodynamic Analysis of Aqueous-Reforming of Polylols for Hydrogen Generation. Fuel 2007, 86, 1727–1736. [Google Scholar] [CrossRef]
- Crabtree, G.W.; Dresselhaus, M.S. The Hydrogen Fuel Alternative. MRS Bull. 2008, 33, 421–428. [Google Scholar] [CrossRef]
- Papadias, D.D.; Peng, J.K.; Ahluwalia, R.K. Hydrogen Carriers: Production, Transmission, Decomposition, and Storage. Int. J. Hydrogen Energy 2021, 46, 24169–24189. [Google Scholar] [CrossRef]
- Jawhari, A.H. Novel Nanomaterials for Hydrogen Production and Storage: Evaluating the Futurity of Graphene/Graphene Composites in Hydrogen Energy. Energies 2022, 15, 9085. [Google Scholar] [CrossRef]
- Trogadas, P.; Fuller, T.F.; Strasser, P. Carbon as Catalyst and Support for Electrochemical Energy Conversion. Carbon 2014, 75, 5–42. [Google Scholar] [CrossRef]
- Kamat, P.V. Graphene-Based Nanoarchitectures. Anchoring Semiconductor and Metal Nanoparticles on a Two-Dimensional Carbon Support. J. Phys. Chem. Lett. 2010, 1, 520–527. [Google Scholar] [CrossRef]
- Zhan, X.; Si, C.; Zhou, J.; Sun, Z. MXene and MXene-Based Composites: Synthesis, Properties and Environment-Related Applications. Nanoscale Horiz. 2020, 5, 235–258. [Google Scholar] [CrossRef]
- Rao, C.N.R.; Pramoda, K. Borocarbonitrides, BxCyNz, 2D Nanocomposites with Novel Properties. Bull. Chem. Soc. Jpn. 2019, 92, 441–468. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, X.; Blume, R.; Zhang, A.; Schlögl, R.; Dang, S.S. Surface-Modified Carbon Nanotubes Catalyze Oxidative Dehydrogenation of n-Butane. Science 2008, 322, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Chen, S.; Bandal, H.A.; Appiah-Ntiamoah, R.; Jadhav, A.R.; Kim, H. Cobalt Nanoparticles Supported on Magnetic Core-Shell Structured Carbon as a Highly Efficient Catalyst for Hydrogen Generation from NaBH4 Hydrolysis. Int. J. Hydrogen Energy 2018, 43, 9296–9306. [Google Scholar] [CrossRef]
- Rambabu, K.; Hai, A.; Bharath, G.; Banat, F.; Show, P.L. Molybdenum Disulfide Decorated Palm Oil Waste Activated Carbon as an Efficient Catalyst for Hydrogen Generation by Sodium Borohydride Hydrolysis. Int. J. Hydrogen Energy 2019, 44, 14406–14415. [Google Scholar] [CrossRef]
- Zhao, Z.; Sun, Y.; Dong, F. Graphitic Carbon Nitride Based Nanocomposites: A Review. Nanoscale 2015, 7, 15–37. [Google Scholar] [CrossRef]
- Wei, L.; Yang, Y.; Yu, Y.N.; Wang, X.; Liu, H.; Lu, Y.; Ma, M.; Chen, Y. Visible-Light-Enhanced Catalytic Hydrolysis of Ammonia Borane Using RuP2 Quantum Dots Supported by Graphitic Carbon Nitride. Int. J. Hydrogen Energy 2021, 46, 3811–3820. [Google Scholar] [CrossRef]
- Cai, Y.-Y.; Li, X.-H.; Zhang, Y.-N.; Wei, X.; Wang, K.-X.; Chen, J.-S. Highly Efficient Dehydrogenation of Formic Acid over a Palladium-Nanoparticle-Based Mott-Schottky Photocatalyst. Angew. Chem. 2013, 125, 12038–12041. [Google Scholar] [CrossRef]
- Wang, L.; Wang, K.; He, T.; Zhao, Y.; Song, H.; Wang, H. Graphitic Carbon Nitride-Based Photocatalytic Materials: Preparation Strategy and Application. ACS Sustain. Chem. Eng. 2020, 8, 16048–16085. [Google Scholar] [CrossRef]
- Liu, M.; Zhou, L.; Luo, X.; Wan, C.; Xu, L. Recent Advances in Noble Metal Catalysts for Hydrogen Production from Ammonia Borane. Catalysts 2020, 10, 788. [Google Scholar] [CrossRef]
- De, S.; Zhang, J.; Luque, R.; Yan, N. Ni-Based Bimetallic Heterogeneous Catalysts for Energy and Environmental Applications. Energy Environ. Sci. 2016, 9, 3314–3347. [Google Scholar] [CrossRef]
- Gholami, R.; Alyani, M.; Smith, K.J. Deactivation of Pd Catalysts by Water during Low Temperature Methane Oxidation Relevant to Natural Gas Vehicle Converters. Catalysts 2015, 5, 561–594. [Google Scholar] [CrossRef]
- Vasudevan, S.; Swathi Tharani, D.; Manickam, M.; Sivasubramanian, R. A Sol–Gel Derived LaCoO3 Perovskite as an Electrocatalyst for Al–Air Batteries. Dalt. Trans. 2024, 53, 3713–3721. [Google Scholar] [CrossRef] [PubMed]
- Yuan, R.; Xu, W.; Pan, L.; Li, R.; Xiao, C.; Qiao, X. Ni-Doped La0.6Sr0.4CoO3 Perovskite as an Efficient Electrocatalyst for Oxygen Reduction and Evolution Reactions in Alkaline Media. Catalysts 2023, 13, 1366. [Google Scholar] [CrossRef]
- Guyon, C.; Métay, E.; Duguet, N.; Lemaire, M. Biphasic Glycerol/2-MeTHF, Ruthenium-Catalysed Enantioselective Transfer Hydrogenation of Ketones Using Sodium Hypophosphite as Hydrogen Donor. Eur. J. Org. Chem. 2013, 2013, 5439–5444. [Google Scholar] [CrossRef]
- Oba, M.; Kojima, K.; Endo, M.; Sano, H.; Nishiyama, K. Palladium-Catalyzed Transfer Hydrogenation of Organic Substrates by Hypophosphite in Water Containing a Nonionic Surfactant. Green Chem. Lett. Rev. 2013, 6, 233–236. [Google Scholar] [CrossRef]
- Shirman, R.; Sasson, Y. Hydrogen Generation from Sodium Hypophosphite Catalyzed by Metallic Nanoparticles Supported on Graphitic Carbon Nitride. Int. J. Hydrogen Energy 2023, 48, 27611–27618. [Google Scholar] [CrossRef]
- Guan, D.; Zhong, J.; Xu, H.; Huang, Y.C.; Hu, Z.; Chen, B.; Zhang, Y.; Ni, M.; Xu, X.; Zhou, W.; et al. A Universal Chemical-Induced Tensile Strain Tuning Strategy to Boost Oxygen-Evolving Electrocatalysis on Perovskite Oxides. Appl. Phys. Rev. 2022, 9, 011422. [Google Scholar] [CrossRef]
- Chakraborty, S.; Bahuguna, A.; Sasson, Y. Ru-GC3N4 Catalyzed Hydrodebenzylation of Benzyl Protected Alcohol and Acid Groups Using Sodium Hypophosphite as a Hydrogen Source. Catalysts 2021, 11, 1227. [Google Scholar] [CrossRef]
- Wang, J.; Yu, Q.; Li, H.; Li, R.; Zeng, S.; Yao, Q.; Guo, Z.; Chen, H.; Qu, K. Natural DNA-Assisted RuP2 on Highly Graphitic N,P-Codoped Carbon for PH-Wide Hydrogen Evolution. Chem. Commun. 2021, 57, 7284–7287. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Ruan, Q.; Tang, J. Ru and RuO: X Decorated Carbon Nitride for Efficient Ammonia Photosynthesis. Nanoscale 2020, 12, 12329–12335. [Google Scholar] [CrossRef]
- Haripriya, M.; Manimekala, T.; Dharmalingam, G.; Minakshi, M.; Sivasubramanian, R. Asymmetric Supercapacitors Based on ZnCo2O4 Nanohexagons and Orange Peel Derived Activated Carbon Electrodes. Chem. Asian J. 2024, 19, e202400202. [Google Scholar] [CrossRef]
- Vinokurov, K.; Bekenstein, Y.; Gutkin, V.; Popov, I.; Millo, O.; Banin, U. Rhodium Growth on Cu2S Nanocrystals Yielding Hybrid Nanoscale Inorganic Cages and Their Synergistic Properties. CrystEngComm 2014, 16, 9506–9512. [Google Scholar] [CrossRef]
- Balcerzak, J.; Redzynia, W.; Tyczkowski, J. In-Situ XPS Analysis of Oxidized and Reduced Plasma Deposited Ruthenium-Based Thin Catalytic Films. Appl. Surf. Sci. 2017, 426, 852–855. [Google Scholar] [CrossRef]
Entry No. | Temp. (°C) | Ru/GCN (mg) | NaH2PO2 (M) | Yield (%) |
---|---|---|---|---|
1 | 60 | 50 | 4 | 27.8 |
2 | 75 | 50 | 4 | 66.7 |
3 | 85 | 50 | 4 | 100 |
4 | 85 | 25 | 4 | 52.1 |
5 | 85 | 100 | 4 | 67.7 |
6 | 85 | 200 | 4 | 64.6 |
7 | 85 | 50 | 2 | 75.0 |
8 | 85 | 50 | 6 | 36.8 |
9 | 85 | 50 | 8 | 22.4 |
10 | 85 | 100 | 6 | 64.6 |
11 | 85 | 200 | 8 | 49.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shirman, R.; Chakraborty, S.; Sasson, Y. Ru/GCN Nanocomposite as an Efficient Catalyst for Hydrogen Generation from Sodium Hypophosphite. Nanomaterials 2024, 14, 1187. https://doi.org/10.3390/nano14141187
Shirman R, Chakraborty S, Sasson Y. Ru/GCN Nanocomposite as an Efficient Catalyst for Hydrogen Generation from Sodium Hypophosphite. Nanomaterials. 2024; 14(14):1187. https://doi.org/10.3390/nano14141187
Chicago/Turabian StyleShirman, Ron, Sourav Chakraborty, and Yoel Sasson. 2024. "Ru/GCN Nanocomposite as an Efficient Catalyst for Hydrogen Generation from Sodium Hypophosphite" Nanomaterials 14, no. 14: 1187. https://doi.org/10.3390/nano14141187
APA StyleShirman, R., Chakraborty, S., & Sasson, Y. (2024). Ru/GCN Nanocomposite as an Efficient Catalyst for Hydrogen Generation from Sodium Hypophosphite. Nanomaterials, 14(14), 1187. https://doi.org/10.3390/nano14141187