Fluorescence-Based Multimodal DNA Logic Gates
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Konry, T.; Walt, D.R. Intelligent Medical Diagnostics via Molecular Logic. J. Am. Chem. Soc. 2009, 131, 13232–13233. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Zhang, L.; Dong, S.; Wang, E. Four-Way Junction-Driven DNA Strand Displacement and Its Application in Building Majority Logic Circuit. ACS Nano 2013, 7, 10211–10217. [Google Scholar] [CrossRef]
- Anisul Haque, S.; Yamamoto, M.; Nakatani, R.; Endo, Y. Binary Logic Gates by Ferromagnetic Nanodots. J. Magn. Magn. Mater. 2004, 282, 380–384. [Google Scholar] [CrossRef]
- Katz, E.; Privman, V. Enzyme-Based Logic Systems for Information Processing. Chem. Soc. Rev. 2010, 39, 1835–1857. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wu, Q.; Ke, Q.; Wang, T.; Zhang, Y.; Wei, F.; Wang, X.; Liu, G. Implementation of Novel Boolean Logic Gates for IMPLICATION and XOR Functions Using Riboregulators. Bioengineered 2022, 13, 1235–1248. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Yan, L.; Fan, Z. Multi-Responsive Fluorescent Probe Based on AIE for the Determination of Fe3+, Total Inorganic Iron, and CN- in Aqueous Medium and Its Application in Logic Gates. J. Photochem. Photobiol. Chem. 2021, 405, 112969. [Google Scholar] [CrossRef]
- Dwivedi, R.; Singh, D.P.; Singh, S.; Singh, A.K.; Chauhan, B.S.; Srikrishna, S.; Singh, V.P. Logic Gate Behavior and Intracellular Application of a Fluorescent Molecular Switch for the Detection of Fe3+ and Cascade Sensing of F− in Pure Aqueous Media. Org. Biomol. Chem. 2019, 17, 7497–7506. [Google Scholar] [CrossRef] [PubMed]
- Zou, Q.; Li, X.; Xue, T.; Zheng, J.; Su, Q. SERS Detection of Mercury (II)/Lead (II): A New Class of DNA Logic Gates. Talanta 2019, 195, 497–505. [Google Scholar] [CrossRef] [PubMed]
- Cheng, N.; Zhu, P.; Xu, Y.; Huang, K.; Luo, Y.; Yang, Z.; Xu, W. High-Sensitivity Assay for Hg (II) and Ag (I) Ion Detection: A New Class of Droplet Digital PCR Logic Gates for an Intelligent DNA Calculator. Biosens. Bioelectron. 2016, 84, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Pan, J.; Liu, C. Versatile Sensing Platform for Cd2+ Detection in Rice Samples and Its Applications in Logic Gate Computation. Anal. Chem. 2020, 92, 6173–6180. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, Q.; Wu, W. Graphene-Based Steganographic Aptasensor for Information Computing and Monitoring Toxins of Biofilm in Food. Front. Microbiol. 2020, 10, 3139. [Google Scholar] [CrossRef] [PubMed]
- Das, D.; Alam, R.; Katarkar, A.; Ali, M. A Differentially Selective Probe for Trivalent Chemosensor upon Single Excitation with Cell Imaging Application: Potential Applications in Combinatorial Logic Circuit and Memory Devices. Photochem. Photobiol. Sci. 2019, 18, 242–252. [Google Scholar] [CrossRef] [PubMed]
- Tavallali, H.; Deilamy-Rad, G.; Mosallanejad, N. A Reversible and Dual Responsive Sensing Approach for Determination of Ascorbate Ion in Fruit Juice, Biological, and Pharmaceutical Samples by Use of Available Triaryl Methane Dye and Its Application to Constructing a Molecular Logic Gate and a Set/Reset Memorized Device. Spectrochim Acta A Mol Biomol Spectrosc. 2019, 215, 276–289. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Jin, X.; Xing, Y.; Ni, G.; Peng, J. Construction of an NAND Logic Gate Based on Molecularly Imprinted Dual-Emission Quantum Dot Composites for the Detection of Antibiotics. Anal. Methods 2019, 11, 2033–2040. [Google Scholar] [CrossRef]
- Sanjabi, M.; Jahanian, A. Multi-Threshold and Multi-Input DNA Logic Design Style for Profiling the microRNA Biomarkers of Real Cancers. IET Nanobiotechnol. 2019, 13, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Liu, P.; Ga, L.; Ai, J. Advances in Applications of Molecular Logic Gates. ACS Omega 2021, 6, 30189–30204. [Google Scholar] [CrossRef] [PubMed]
- Bhat, M.P.; Vinayak, S.; Yu, J.; Jung, H.-Y.; Kurkuri, M. Colorimetric Receptors for the Detection of Biologically Important Anions and Their Application in Designing Molecular Logic Gate. ChemistrySelect 2020, 5, 13135–13143. [Google Scholar] [CrossRef]
- Gong, X.; Li, Z.; Hu, Q.; Zhou, R.; Shuang, S.; Dong, C. N,S,P Co-Doped Carbon Nanodot Fabricated from Waste Microorganism and Its Application for Label-Free Recognition of Manganese(VII) and l-Ascorbic Acid and AND Logic Gate Operation. ACS Appl. Mater. Interfaces 2017, 9, 38761–38772. [Google Scholar] [CrossRef]
- Zhourui, X.; Donghua, H.; Mengmeng, B.; Yali, Y.; Jinfang, N.I.E. Fluorescence Detection Based on DNA-Templated Silver Nanoclusters and the Construction of Multi-Level Logic Gate. Chem. J. Chin. Univ. 2020, 41, 102. [Google Scholar] [CrossRef]
- Yue, R.; Li, Z.; Wang, G.; Li, J.; Ma, N. Logic Sensing of MicroRNA in Living Cells Using DNA-Programmed Nanoparticle Network with High Signal Gain. ACS Sens. 2019, 4, 250–256. [Google Scholar] [CrossRef]
- Song, T.; Eshra, A.; Shah, S.; Bui, H.; Fu, D.; Yang, M.; Mokhtar, R.; Reif, J. Fast and Compact DNA Logic Circuits Based on Single-Stranded Gates Using Strand-Displacing Polymerase. Nat. Nanotechnol. 2019, 14, 1075–1081. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, A.; Tanaka, K.; Saito, I. DNA Logic Gates. J. Am. Chem. Soc. 2004, 126, 9458–9463. [Google Scholar] [CrossRef] [PubMed]
- Carbone, A.; Seeman, N.C. Circuits and Programmable Self-Assembling DNA Structures. Proc. Natl. Acad. Sci. USA 2002, 99, 12577–12582. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.; Winfree, E. Scaling up Digital Circuit Computation with DNA Strand Displacement Cascades. Science 2011, 332, 1196–1201. [Google Scholar] [CrossRef] [PubMed]
- McConnell, E.M.; Cozma, I.; Mou, Q.; Brennan, J.D.; Lu, Y.; Li, Y. Biosensing with DNAzymes. Chem. Soc. Rev. 2021, 50, 8954–8994. [Google Scholar] [CrossRef] [PubMed]
- Adleman, L.M. Molecular Computation of Solutions to Combinatorial Problems. Science 1994, 266, 1021–1024. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Li, Q.; Shi, J.; Fan, C.; Wang, F. Biocomputing Based on DNA Strand Displacement Reactions. ChemPhysChem Eur. J. Chem. Phys. Phys. Chem. 2021, 22, 1151–1166. [Google Scholar] [CrossRef]
- de Silva, A.P.; Uchiyama, S.; Vance, T.P.; Wannalerse, B. A Supramolecular Chemistry Basis for Molecular Logic and Computation. Coord. Chem. Rev. 2007, 251, 1623–1632. [Google Scholar] [CrossRef]
- Zhao, S.; Yu, L.; Yang, S.; Tang, X.; Chang, K.; Chen, M. Boolean Logic Gate Based on DNA Strand Displacement for Biosensing: Current and Emerging Strategies. Nanoscale Horiz. 2021, 6, 298–310. [Google Scholar] [CrossRef]
- Boruah, K.; Dutta, J. DNA Computing Models for Boolean Circuits and Logic Gates. In Proceedings of the 2015 IEEE International Conference on Computational Intelligence & Communication Technology, Ghaziabad, India, 13–14 February 2015; pp. 529–533. [Google Scholar] [CrossRef]
- Lin, Y.; Yang, Z.; Lake, R.J.; Zheng, C.; Lu, Y. Enzyme-Mediated Endogenous and Bioorthogonal Control of a DNAzyme Fluorescent Sensor for Imaging Metal Ions in Living Cells. Angew. Chem. Int. Ed. 2019, 58, 17061–17067. [Google Scholar] [CrossRef]
- Yin, F.; Wang, F.; Fan, C.; Zuo, X.; Li, Q. Biosensors Based on DNA Logic Gates. VIEW 2021, 2, 20200038. [Google Scholar] [CrossRef]
- Peng, R.; Zheng, X.; Lyu, Y.; Xu, L.; Zhang, X.; Ke, G.; Liu, Q.; You, C.; Huan, S.; Tan, W. Engineering a 3D DNA-Logic Gate Nanomachine for Bispecific Recognition and Computing on Target Cell Surfaces. J. Am. Chem. Soc. 2018, 140, 9793–9796. [Google Scholar] [CrossRef]
- Yang, Q.; Yang, F.; Dai, W.; Meng, X.; Wei, W.; Cheng, Y.; Dong, J.; Lu, H.; Dong, H. DNA Logic Circuits for Multiple Tumor Cells Identification Using Intracellular MicroRNA Molecular Bispecific Recognition. Adv. Healthc. Mater. 2021, 10, e2101130. [Google Scholar] [CrossRef]
- Miao, P.; Tang, Y. Cascade Strand Displacement and Bipedal Walking Based DNA Logic System for miRNA Diagnostics. ACS Cent. Sci. 2021, 7, 1036–1044. [Google Scholar] [CrossRef]
- Zhong, R.; Xiao, M.; Zhu, C.; Shen, X.; Tang, Q.; Zhang, W.; Wang, L.; Song, S.; Qu, X.; Pei, H.; et al. Logic Catalytic Interconversion of G-Molecular Hydrogel. ACS Appl. Mater. Interfaces 2018, 10, 4512–4518. [Google Scholar] [CrossRef]
- Bader, A.; Cockroft, S.L. Simultaneous G-Quadruplex DNA Logic. Chem.—Eur. J. 2018, 24, 4820–4824. [Google Scholar] [CrossRef]
- Wang, S.; Sun, J.; Zhao, J.; Lu, S.; Yang, X. Photo-Induced Electron Transfer-Based Versatile Platform with G-Quadruplex/Hemin Complex as Quencher for Construction of DNA Logic Circuits. Anal. Chem. 2018, 90, 3437–3442. [Google Scholar] [CrossRef]
- Qu, X.; Wang, S.; Ge, Z.; Wang, J.; Yao, G.; Li, J.; Zuo, X.; Shi, J.; Song, S.; Wang, L.; et al. Programming Cell Adhesion for On-Chip Sequential Boolean Logic Functions. J. Am. Chem. Soc. 2017, 139, 10176–10179. [Google Scholar] [CrossRef] [PubMed]
- Massey, M.; Medintz, I.L.; Ancona, M.G.; Algar, W.R. Time-Gated FRET and DNA-Based Photonic Molecular Logic Gates: AND, OR, NAND, and NOR. ACS Sens. 2017, 2, 1205–1214. [Google Scholar] [CrossRef] [PubMed]
- Margulies, D.; Felder, C.E.; Melman, G.; Shanzer, A. A Molecular Keypad Lock: A Photochemical Device Capable of Authorizing Password Entries. J. Am. Chem. Soc. 2007, 129, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liu, Y.; Dong, S.; Wang, E. DNA-Based Advanced Logic Circuits for Nonarithmetic Information Processing. NPG Asia Mater. 2015, 7, e166. [Google Scholar] [CrossRef]
- Chen, T.; Fu, X.; Zhang, Q.; Mao, D.; Song, Y.; Feng, C.; Zhu, X. A DNA Logic Gate with Dual-Anchored Proximity Aptamers for the Accurate Identification of Circulating Tumor Cells. Chem. Commun. 2020, 56, 6961–6964. [Google Scholar] [CrossRef] [PubMed]
- Llopis-Lorente, A.; de Luis, B.; García-Fernández, A.; Jimenez-Falcao, S.; Orzáez, M.; Sancenón, F.; Villalonga, R.; Martínez-Máñez, R. Hybrid Mesoporous Nanocarriers Act by Processing Logic Tasks: Toward the Design of Nanobots Capable of Reading Information from the Environment. ACS Appl. Mater. Interfaces 2018, 10, 26494–26500. [Google Scholar] [CrossRef]
- Tregubov, A.A.; Nikitin, P.I.; Nikitin, M.P. Advanced Smart Nanomaterials with Integrated Logic-Gating and Biocomputing: Dawn of Theranostic Nanorobots. Chem. Rev. 2018, 118, 10294–10348. [Google Scholar] [CrossRef]
- Thubagere, A.J.; Li, W.; Johnson, R.F.; Chen, Z.; Doroudi, S.; Lee, Y.L.; Izatt, G.; Wittman, S.; Srinivas, N.; Woods, D.; et al. A Cargo-Sorting DNA Robot. Science 2017, 357, eaan6558. [Google Scholar] [CrossRef]
- Chao, J.; Wang, J.; Wang, F.; Ouyang, X.; Kopperger, E.; Liu, H.; Li, Q.; Shi, J.; Wang, L.; Hu, J.; et al. Solving Mazes with Single-Molecule DNA Navigators. Nat. Mater. 2019, 18, 273–279. [Google Scholar] [CrossRef]
- Chang, D.; Kim, K.T.; Lindberg, E.; Winssinger, N. Smartphone DNA or RNA Sensing Using Semisynthetic Luciferase-Based Logic Device. ACS Sens. 2020, 5, 807–813. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, L.; Jiang, W. Toehold-Mediated Strand Displacement Reaction-Dependent Fluorescent Strategy for Sensitive Detection of Uracil-DNA Glycosylase Activity. Biosens. Bioelectron. 2017, 89, 984–988. [Google Scholar] [CrossRef]
- Genot, A.J.; Bath, J.; Turberfield, A.J. Combinatorial Displacement of DNA Strands: Application to Matrix Multiplication and Weighted Sums. Angew. Chem.-Int. Ed. 2013, 52, 1189–1192. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Zhang, L.; Wang, E. Measurement of the Base Number of DNA Using a Special Calliper Made of a Split G-Quadruplex. Chem. Commun. 2012, 48, 11990–11992. [Google Scholar] [CrossRef] [PubMed]
- Seelig, G.; Soloveichik, D.; Zhang, D.Y.; Winfree, E. Enzyme-Free Nucleic Acid Logic Circuits. Science 2006, 314, 1585–1588. [Google Scholar] [CrossRef] [PubMed]
- Wijesinghe, K.M.; Sabbih, G.; Algama, C.H.; Syed, R.; Danquah, M.K.; Dhakal, S. FRET-Based Single-Molecule Detection of Pathogen Protein IsdA Using Computationally Selected Aptamers. Anal. Chem. 2023, 95, 9839–9846. [Google Scholar] [CrossRef] [PubMed]
- Kaur, A.; Sapkota, K.; Dhakal, S. Multiplexed Nucleic Acid Sensing with Single-Molecule FRET. ACS Sens. 2019, 4, 623–633. [Google Scholar] [CrossRef]
- Aitken, C.E.; Marshall, R.A.; Puglisi, J.D. An Oxygen Scavenging System for Improvement of Dye Stability in Single-Molecule Fluorescence Experiments. Biophys. J. 2008, 94, 1826–1835. [Google Scholar] [CrossRef]
- Swoboda, M.; Henig, J.; Cheng, H.-M.; Brugger, D.; Haltrich, D.; Plumeré, N.; Schlierf, M. Enzymatic Oxygen Scavenging for Photostability without pH Drop in Single-Molecule Experiments. ACS Nano 2012, 6, 6364–6369. [Google Scholar] [CrossRef]
- Andréasson, J.; Pischel, U. Smart Molecules at Work—Mimicking Advanced Logic Operations. Chem. Soc. Rev. 2009, 39, 174–188. [Google Scholar] [CrossRef]
- Peng, Y.; Zhou, W.; Yuan, R.; Xiang, Y. Dual-Input Molecular Logic Circuits for Sensitive and Simultaneous Sensing of Multiple microRNAs from Tumor Cells. Sens. Actuators B Chem. 2018, 264, 202–207. [Google Scholar] [CrossRef]
- Chen, X.; Liu, X.; Wang, F.; Li, S.; Chen, C.; Qiang, X.; Shi, X. Massively Parallel DNA Computing Based on Domino DNA Strand Displacement Logic Gates. ACS Synth. Biol. 2022, 11, 2504–2512. [Google Scholar] [CrossRef]
- Gao, J.; Liu, Y.; Lin, X.; Deng, J.; Yin, J.; Wang, S. Implementation of Cascade Logic Gates and Majority Logic Gate on a Simple and Universal Molecular Platform. Sci. Rep. 2017, 7, 14014. [Google Scholar] [CrossRef]
- Seeja, V.M.; Daniel Raj, A.; Sanjoy, D. Wallace Tree Multiplier Design and Simulation with DNA Logic Gates. J. VLSI Des. Signal Process. 2016, 2, 1–16. [Google Scholar]
- Faheem, H.; Mathivanan, J.; Talbot, H.; Zeghal, H.; Vangaveti, S.; Sheng, J.; Chen, A.A.; Chandrasekaran, A.R. Toehold Clipping: A Mechanism for Remote Control of DNA Strand Displacement. Nucleic Acids Res. 2023, 51, 4055–4063. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Algama, C.H.; Basir, J.; Wijesinghe, K.M.; Dhakal, S. Fluorescence-Based Multimodal DNA Logic Gates. Nanomaterials 2024, 14, 1185. https://doi.org/10.3390/nano14141185
Algama CH, Basir J, Wijesinghe KM, Dhakal S. Fluorescence-Based Multimodal DNA Logic Gates. Nanomaterials. 2024; 14(14):1185. https://doi.org/10.3390/nano14141185
Chicago/Turabian StyleAlgama, Chamika Harshani, Jamil Basir, Kalani M. Wijesinghe, and Soma Dhakal. 2024. "Fluorescence-Based Multimodal DNA Logic Gates" Nanomaterials 14, no. 14: 1185. https://doi.org/10.3390/nano14141185
APA StyleAlgama, C. H., Basir, J., Wijesinghe, K. M., & Dhakal, S. (2024). Fluorescence-Based Multimodal DNA Logic Gates. Nanomaterials, 14(14), 1185. https://doi.org/10.3390/nano14141185