Modulation of Photocatalytic CO2 Reduction by n–p Codoping Engineering of Single-Atom Catalysts
Abstract
:1. Introduction
2. Computational Details
3. Results and Discussion
3.1. Structures and Stability
3.2. Modulation of CO2 Reduction
3.3. Orbital Alignments and d-Band Center of the TM_3d
3.4. Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, L.; Wang, R.; Qiu, T.; Yang, L.; Han, Q.; Shen, Q.; Zhou, X.; Zhou, Y.; Zou, Z. Bismuth vacancy-induced efficient CO2 photoreduction in BiOCl directly from natural air: A progressive step toward photosynthesis in nature. Nano Lett. 2021, 21, 10260–10266. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Huang, H.; Ye, L.; Zhang, T.; Zhang, Y.; Han, X.; Ma, T. Thickness-dependent facet junction control of layered BiOIO3 single crystals for highly efficient CO2 photoreduction. Adv. Funct. Mater. 2018, 28, 1804284. [Google Scholar] [CrossRef]
- Liang, L.; Lei, F.; Gao, S.; Sun, Y.; Jiao, X.; Wu, J.; Qamar, S.; Xie, Y. Single unit cell bismuth tungstate layers realizing robust solar CO2 reduction to methanol. Angew. Chem. Int. Ed. 2015, 54, 13971–13974. [Google Scholar] [CrossRef]
- Gao, S.; Gu, B.; Jiao, X.; Sun, Y.; Zu, X.; Yang, F.; Zhu, W.; Wang, C.; Feng, Z.; Ye, B. Highly efficient and exceptionally durable CO2 photoreduction to methanol over freestanding defective single-unit-cell bismuth vanadate layers. J. Am. Chem. Soc. 2017, 139, 3438–3445. [Google Scholar] [CrossRef] [PubMed]
- Tu, W.; Zhou, Y.; Zou, Z. Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: State-of-the-art accomplishment, challenges, and prospects. Adv. Mater. 2014, 26, 4607–4626. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xin, S.; Xiao, Y.; Zhang, Z.; Li, Z.; Zhang, W.; Li, C.; Bao, R.; Peng, J.; Yi, J. Manipulating the water dissociation electrocatalytic sites of bimetallic nickel-based alloys for highly efficient alkaline hydrogen evolution. Angew. Chem. Int. Ed. 2022, 61, e202202518. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Ji, S.; Chen, C.; Peng, Q.; Wang, D.; Li, Y. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264. [Google Scholar] [CrossRef]
- Liu, G.; Robertson, A.W.; Li, M.M.J.; Kuo, W.C.; Darby, M.T.; Muhieddine, M.H.; Lin, Y.C.; Suenaga, K.; Stamatakis, M.; Warner, J.H. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction. Angew. Chem. 2017, 9, 810–816. [Google Scholar] [CrossRef]
- Qiao, B.; Wang, A.; Yang, X.; Allard, L.F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641. [Google Scholar] [CrossRef]
- Wang, A.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81. [Google Scholar] [CrossRef]
- Ju, W.; Bagger, A.; Hao, G.P.; Varela, A.S.; Sinev, I.; Bon, V.; Roldan Cuenya, B.; Kaskel, S.; Rossmeisl, J.; Strasser, P. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat. Commun. 2017, 8, 944. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Li, X.; Shi, W.; Ling, P.; Sun, Y.; Jiao, X.; Gao, S.; Liang, L.; Xu, J.; Yan, W. Efficient visible-light-driven CO2 reduction mediated by defect-engineered BiOBr atomic layers. Angew. Chem. 2018, 130, 8855–8859. [Google Scholar] [CrossRef]
- Xu, K.; Wang, L.; Feng, H.; Xu, Z.; Zhuang, J.; Du, Y.; Pan, F.; Hao, W. Theoretical insights into nitrogen oxide activation on halogen defect-rich {001} facets of bismuth oxyhalide. J. Mater. Sci. Technol. 2021, 77, 217–222. [Google Scholar] [CrossRef]
- Zhang, X.; Li, T.; Guan, X.; Zhang, C.; Li, R.; Xue, J.; Liu, J.; Wang, Y.; Fan, C. Theoretical insights into effective electron transfer and migration behavior for CO2 reduction on the BiOBr (001) surfaces. Phys. Chem. Chem. Phys. 2022, 24, 2032–2039. [Google Scholar] [CrossRef]
- Zhang, N.; Li, L.; Shao, Q.; Zhu, T.; Huang, X.; Xiao, X. Fe-doped BiOCl nanosheets with light-switchable oxygen vacancies for photocatalytic nitrogen fixation. ACS Appl. Energy Mater. 2019, 2, 8394–8398. [Google Scholar]
- Fu, J.; Jiang, K.; Qiu, X.; Yu, J.; Liu, M. Product selectivity of photocatalytic CO2 reduction reactions. Mater. Today 2020, 32, 222–243. [Google Scholar] [CrossRef]
- Di, J.; Chen, C.; Yang, S.-Z.; Chen, S.; Duan, M.; Xiong, J.; Zhu, C.; Long, R.; Hao, W.; Chi, Z. Isolated single atom cobalt in Bi3O4Br atomic layers to trigger efficient CO2 photoreduction. Nat. Commun. 2019, 10, 2840. [Google Scholar] [PubMed]
- Qu, J.; Du, Y.; Ji, P.; Li, Z.; Jiang, N.; Sun, X.; Xue, L.; Li, H.; Sun, G. Fe, Cu co-doped BiOBr with improved photocatalytic ability of pollutants degradation. J. Alloys Compd. 2021, 881, 160391. [Google Scholar] [CrossRef]
- Vogt, C.; Monai, M.; Sterk, E.B.; Palle, J.; Melcherts, A.E.; Zijlstra, B.; Groeneveld, E.; Berben, P.H.; Boereboom, J.M.; Hensen, E.J. Understanding carbon dioxide activation and carbon–carbon coupling over nickel. Nat. Commun. 2019, 10, 5330. [Google Scholar] [CrossRef]
- Wang, K.; Cheng, M.; Xia, F.; Cao, N.; Zhang, F.; Ni, W.; Yue, X.; Yan, K.; He, Y.; Shi, Y. Atomically dispersed electron traps in Cu doped BiOBr boosting CO2 reduction to methanol by pure H2O. Small 2023, 19, 2207581. [Google Scholar] [CrossRef]
- Bonetto, R.; Crisanti, F.; Sartorel, A. Carbon Dioxide Reduction Mediated by Iron Catalysts: Mechanism and Intermediates That Guide Selectivity. ACS Omega 2020, 5, 21309–21319. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ban, C.; Meng, J.; Ma, J.; Zou, H.; Feng, Y.; Ding, J.; Duan, Y.; Gan, L.; Zhou, X. Charge localization induced by Fe doping in porous Bi5O7I micro-flower for enhanced photoreduction of CO2 to CO. Sep. Purif. Technol. 2023, 312, 123379. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, C.; Yin, L.; Zhang, R.; Liu, G. Iodine-deficient BiOI nanosheets with lowered valence band maximum to enable visible light photocatalytic activity. ACS Sustain. Chem. Eng. 2019, 7, 7900–7907. [Google Scholar] [CrossRef]
- Kato, D.; Hongo, K.; Maezono, R.; Higashi, M.; Kunioku, H.; Yabuuchi, M.; Suzuki, H.; Okajima, H.; Zhong, C.; Nakano, K. Valence band engineering of layered bismuth oxyhalides toward stable visible-light water splitting: Madelung site potential analysis. J. Am. Chem. Soc. 2017, 139, 18725–18731. [Google Scholar] [CrossRef] [PubMed]
- Jing, T.; Dai, Y.; Ma, X.; Wei, W.; Huang, B. The photocatalytic properties of ultrathin bismuth oxychloride nanosheets: A first principles study. Phys. Chem. Chem. Phys. 2016, 18, 7261–7268. [Google Scholar] [CrossRef]
- García de Arquer, F.P.; Bushuyev, O.S.; De Luna, P.; Dinh, C.T.; Seifitokaldani, A.; Saidaminov, M.I.; Tan, C.S.; Quan, L.N.; Proppe, A.; Kibria, M.G. 2D metal oxyhalide-derived catalysts for efficient CO2 electroreduction. Adv. Mater. 2018, 30, 1802858. [Google Scholar] [CrossRef] [PubMed]
- Cui, D.; Wang, L.; Xu, K.; Ren, L.; Wang, L.; Yu, Y.; Du, Y.; Hao, W. Band-gap engineering of BiOCl with oxygen vacancies for efficient photooxidation properties under visible-light irradiation. J. Mater. Chem. A 2018, 6, 2193–2199. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Dong, C.L.; Huang, Y.C.; Chen, J.; Zhang, Z.; Meng, F.; Zhang, Q.; Huangfu, Y.; Zhao, D. Single-atom nickel terminating sp2 and sp3 nitride in polymeric carbon nitride for visible-light photocatalytic overall water splitting. Chem. Sci. 2021, 12, 3633–3643. [Google Scholar] [CrossRef]
- Vogler, A.; Kunkely, H. Photoreactivity of metal-to-ligand charge transfer excited states. Coord. Chem. Rev. 1998, 177, 81–96. [Google Scholar] [CrossRef]
- Zhang, M.; Du, J.; Chen, Y. Single Cu atom supported on modified h-BN monolayer as np codoped catalyst for CO oxidation: A computational study. Catal. Today 2021, 368, 148–160. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, H.; Zhang, X.; Jia, J.; Wu, H. Design of high-activity single-atom catalysts via np codoping. Appl. Surf. Sci. 2018, 433, 60–65. [Google Scholar] [CrossRef]
- Zhu, W.; Qiu, X.; Iancu, V.; Chen, X.Q.; Pan, H.; Wang, W.; Dimitrijevic, N.M.; Rajh, T.; Meyer, H.M., III; Paranthaman, M.P. Band gap narrowing of titanium oxide semiconductors by noncompensated anion-cation codoping for enhanced visible-light photoactivity. Phys. Rev. Lett. 2009, 103, 226401. [Google Scholar] [CrossRef] [PubMed]
- Lany, S. Defect phase diagram for doping of Ga2O3. APL Mater. 2018, 6, 046103. [Google Scholar] [CrossRef]
- Watson, R.; Bennett, L. Transition metals: D-band hybridization, electronegativities and structural stability of intermetallic compounds. Phys. Rev. B 1978, 18, 6439. [Google Scholar] [CrossRef]
- Jacobsen, K.W.; Norskov, J.; Puska, M.J. Interatomic interactions in the effective-medium theory. Phys. Rev. B 1987, 35, 7423. [Google Scholar] [CrossRef]
- Kroger, F.A. The chemistry of imperfect crystals. Imperfection Chem. Cryst. Solids 1974, 2, 14. [Google Scholar] [CrossRef]
- Lany, S.; Zunger, A. Dopability, intrinsic conductivity, and nonstoichiometry of transparent conducting oxides. Phys. Rev. Lett. 2007, 98, 045501. [Google Scholar] [CrossRef]
- Vogt, P.; Bierwagen, O. Reaction kinetics and growth window for plasma-assisted molecular beam epitaxy of Ga2O3: Incorporation of Ga vs. Ga2O desorption. Appl. Phys. Lett. 2016, 108, 072101. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953. [Google Scholar] [CrossRef] [PubMed]
- Ceperley, D.M.; Alder, B.J. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 1980, 45, 566. [Google Scholar] [CrossRef]
- Lu, J.; Zhou, W.; Zhang, X.; Xiang, G. Electronic structures and lattice dynamics of layered BiOCl single crystals. J. Phys. Chem. Lett. 2020, 11, 1038–1044. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef]
- Wei, S.-H.; Zhang, S. Chemical trends of defect formation and doping limit in II-VI semiconductors: The case of CdTe. Phys. Rev. B 2002, 66, 155211. [Google Scholar] [CrossRef]
- Makov, G.; Payne, M.C. Periodic boundary conditions in ab initio calculations. Phys. Rev. B 1995, 51, 4014. [Google Scholar] [CrossRef] [PubMed]
- Nørskov, J.K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J.R.; Bligaard, T.; Jonsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892. [Google Scholar] [CrossRef]
- Huang, Y.; Rehman, F.; Tamtaji, M.; Li, X.; Huang, Y.; Zhang, T.; Luo, Z. Mechanistic understanding and design of non-noble metal-based single-atom catalysts supported on two-dimensional materials for CO2 electroreduction. J. Mater. Chem. A 2022, 10, 5813–5834. [Google Scholar] [CrossRef]
- Hirshfeld, F.L. Bonded-atom fragments for describing molecular charge densities. Theor. Chim. Acta 1977, 44, 129–138. [Google Scholar] [CrossRef]
- Cao, S.; Guo, C.; Lv, Y.; Guo, Y.; Liu, Q. A novel BiOCl film with flowerlike hierarchical structures and its optical properties. Nanotechnology 2009, 20, 275702. [Google Scholar] [CrossRef]
- Cai, Y.; Li, D.; Sun, J.; Chen, M.; Li, Y.; Zou, Z.; Zhang, H.; Xu, H.; Xia, D. Synthesis of BiOCl nanosheets with oxygen vacancies for the improved photocatalytic properties. Appl. Surf. Sci. 2018, 439, 697–704. [Google Scholar] [CrossRef]
- Wang, F.; Gu, Y.; Yang, Z.; Xie, Y.; Zhang, J.; Shang, X.; Zhao, H.; Zhang, Z.; Wang, X. The effect of halogen on BiOX (X = Cl, Br, I)/Bi2WO6 heterojunction for visible-light-driven photocatalytic benzyl alcohol selective oxidation. Appl. Catal. A-Gen. 2018, 567, 65–72. [Google Scholar] [CrossRef]
- Wang, Z.; Chu, Z.; Dong, C.; Wang, Z.; Yao, S.; Gao, H.; Liu, Z.; Liu, Y.; Yang, B.; Zhang, H. Ultrathin BiOX (X = Cl, Br, I) nanosheets with exposed {001} facets for photocatalysis. ACS Appl. Nano Mater. 2020, 3, 1981–1991. [Google Scholar] [CrossRef]
- Hwang, J.; Noh, S.H.; Han, B. Design of active bifunctional electrocatalysts using single atom doped transition metal dichalcogenides. Appl. Surf. Sci. 2019, 471, 545–552. [Google Scholar] [CrossRef]
- Fu, Z.; Yang, B.; Wu, R. Understanding the activity of single-atom catalysis from frontier orbitals. Phys. Rev. Lett. 2020, 125, 156001. [Google Scholar] [CrossRef]
- Tsounis, C.; Subhash, B.; Kumar, P.V.; Bedford, N.M.; Zhao, Y.; Shenoy, J.; Ma, Z.; Zhang, D.; Toe, C.Y.; Cheong, S. Pt single atom electrocatalysts at graphene edges for efficient alkaline hydrogen evolution. Adv. Funct. Mater. 2022, 32, 2203067. [Google Scholar] [CrossRef]
Defect | d(*CO2) (Å) | d(*COOH) (Å) | d-Band Center (eV) | Θ (°) |
---|---|---|---|---|
BiFe0 | / | 1.91 | −2.54 | 179.75 |
BiFe−1 | 1.90 | 1.83 | −1.26 | 145.77 |
PFe0 | 1.90 | 1.83 | −1.27 | 147.15 |
BiCo0 | / | 1.85 | −1.81 | 179.53 |
BiCo−1 | / | 1.80 | −2.45 | 148.32 |
PCo0 | 1.97 | 1.81 | −0.83 | 147.70 |
BiNi0 | / | 1.86 | −3.85 | 179.66 |
BiNi−1 | / | 1.81 | −2.09 | 179.15 |
PNi0 | 3.31 | 1.84 | −1.46 | 177.90 |
BiCu0 | / | 1.94 | −2.81 | 179.77 |
BiCu−1 | / | 1.93 | −2.31 | 179.18 |
PCu0 | / | 1.93 | −2.31 | 179.13 |
PCu−1 | 1.97 | 1.88 | −1.45 | 153.71 |
PCu@2Cl0 | / | 1.88 | −3.12 | 149.73 |
PCu@3Cl0 | / | 1.85 | −1.99 | 179.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, G.; Zhang, C.; Liu, Y.; Sun, Y.; Qi, X. Modulation of Photocatalytic CO2 Reduction by n–p Codoping Engineering of Single-Atom Catalysts. Nanomaterials 2024, 14, 1183. https://doi.org/10.3390/nano14141183
Yin G, Zhang C, Liu Y, Sun Y, Qi X. Modulation of Photocatalytic CO2 Reduction by n–p Codoping Engineering of Single-Atom Catalysts. Nanomaterials. 2024; 14(14):1183. https://doi.org/10.3390/nano14141183
Chicago/Turabian StyleYin, Guowei, Chunxiao Zhang, Yundan Liu, Yuping Sun, and Xiang Qi. 2024. "Modulation of Photocatalytic CO2 Reduction by n–p Codoping Engineering of Single-Atom Catalysts" Nanomaterials 14, no. 14: 1183. https://doi.org/10.3390/nano14141183
APA StyleYin, G., Zhang, C., Liu, Y., Sun, Y., & Qi, X. (2024). Modulation of Photocatalytic CO2 Reduction by n–p Codoping Engineering of Single-Atom Catalysts. Nanomaterials, 14(14), 1183. https://doi.org/10.3390/nano14141183