Hexylammonium Acetate-Regulated Buried Interface for Efficient and Stable Perovskite Solar Cells
Abstract
1. Introduction
2. Results and Discussion
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Zhou, C.; Lin, L.; Pei, F.; Xiao, M.; Yang, X.; Yuan, G.; Zhu, C.; Chen, Y.; Chen, Q. Gelation of Hole Transport Layer to Improve the Stability of Perovskite Solar Cells. Nano-Micro Lett. 2023, 15, 175. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Pascoe, A.R.; Wu, W.Q.; Ku, Z.; Peng, Y.; Zhong, J.; Caruso, R.A.; Cheng, Y.B. Effect of the Microstructure of the Functional Layers on the Efficiency of Perovskite Solar Cells. Adv. Mater. 2017, 29, 1601715. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, Q.; Tang, W.; Qiu, W.; Wu, Y.; Peng, Q. Nano Energy Heterocyclic Amino Acid Molecule as a Multifunctional Interfacial Bridge for Improving the Efficiency and Stability of Quadruple Cation Perovskite Solar Cells. Nano Energy 2023, 107, 108154. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, H.; Zhao, Y.; Liu, P.; Kondamareddy, K.K.; Wang, C. Carrier Modulation via Tunnel Oxide Passivating at Buried Perovskite Interface for Stable Carbon-Based Solar Cells. Nanomaterials 2023, 13, 2640. [Google Scholar] [CrossRef] [PubMed]
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Guo, T.; Wang, C.; Zou, J.; Wang, J.; Dong, W.; Li, J.; Zhang, W.; Zhang, X.; Zheng, W. Enhancing the Efficiency of Perovskite Solar Cells through Interface Engineering with MoS2 Quantum Dots. Nanomaterials 2022, 12, 3079. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Du, X.; Chen, R.; Zhang, L.; An, Z.; Jen, A.K.Y.; You, J.; Liu, S. Understanding Microstructural Development of Perovskite Crystallization for High Performance Solar Cells. Adv. Mater. 2023, 35, e2306947. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Sun, X.; Zheng, X.; Li, B.; Gao, D.; Zhang, S.; Wu, X.; Li, S.; Gong, J.; Luther, J.M.; et al. Stabilized Hole-Selective Layer for High-Performance Inverted p-i-n Perovskite Solar Cells. Science 2023, 382, 284–289. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Zhang, L.; Wang, H.; Yang, X.; Meng, J.; Liu, H.; Yin, Z.; Wu, J.; Zhang, X.; You, J. Enhanced Electron Extraction Using SnO2 for High-Efficiency Planar-Structure HC(NH2)2 PbI3-Based Perovskite Solar Cells. Nat. Energy 2017, 2, 16177. [Google Scholar] [CrossRef]
- Altinkaya, C.; Aydin, E.; Ugur, E.; Isikgor, F.H.; Subbiah, A.S.; De Bastiani, M.; Liu, J.; Babayigit, A.; Allen, T.G.; Laquai, F.; et al. Tin Oxide Electron-Selective Layers for Efficient, Stable, and Scalable Perovskite Solar Cells. Adv. Mater. 2021, 33, 2005504. [Google Scholar] [CrossRef] [PubMed]
- Yun, A.J.; Kim, J.; Hwang, T.; Park, B. Origins of Efficient Perovskite Solar Cells with Low-Temperature Processed SnO2 Electron Transport Layer. ACS Appl. Energy Mater. 2019, 2, 3554–3560. [Google Scholar] [CrossRef]
- Yoo, J.J.; Seo, G.; Chua, M.R.; Park, T.G.; Lu, Y.; Rotermund, F.; Kim, Y.; Moon, C.S.; Jeon, N.J.; Bulović, V.; et al. Efficient Perovskite Solar Cells via Improved Carrier Management. Nature 2021, 590, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Zhu, K. Advances in SnO2 for Efficient and Stable n–i–p Perovskite Solar Cells. Adv. Mater. 2022, 34, e2110438. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Guo, F.; Wang, X.; Xu, K.; Lei, M.; Liang, Y.; Zhao, Y.; Xu, D. SnO2-in-Polymer Matrix for High-Efficiency Perovskite Solar Cells with Improved Reproducibility and Stability. Adv. Mater. 2018, 30, e1805153. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhao, X.; Kim, S.G.; Park, N.G. Multifunctional Chemical Linker Imidazoleacetic Acid Hydrochloride for 21% Efficient and Stable Planar Perovskite Solar Cells. Adv. Mater. 2019, 31, 1902902. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.; Kim, M.; Seo, J.; Lu, H.; Ahlawat, P.; Mishra, A.; Yang, Y.; Hope, M.A.; Eickemeyer, F.T.; Kim, M.; et al. Pseudo-Halide Anion Engineering for α-FAPbI3 Perovskite Solar Cells. Nature 2021, 592, 381–385. [Google Scholar] [CrossRef] [PubMed]
- Pham, H.M.; Naqvi, S.D.H.; Tran, H.; Van Tran, H.; Delda, J.; Hong, S.; Jeong, I.; Gwak, J.; Ahn, S.J. Effects of the Electrical Properties of SnO2 and C60 on the Carrier Transport Characteristics of p-i-n-Structured Semitransparent Perovskite Solar Cells. Nanomaterials 2023, 13, 3091. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Bi, L.; Fu, Q.; Li, B.; Wang, J.; Jeong, S.Y.; Feng, K.; Ma, S.; Liao, Q.; Lin, F.R.; et al. Target Therapy for Buried Interface Enables Stable Perovskite Solar Cells with 25.05% Efficiency. Adv. Mater. 2023, 35, e2303665. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.; Feng, Z.; Weng, C.; Chen, X.; Huang, S. Enhancing the Photovoltaic Performance of Perovskite Solar Cells via Ferrocene Dicarboxylic Acid-Doped-Poly(9-Vinylcarbazole) Passivation. J. Mater. Sci. Mater. Electron. 2024, 35, 559. [Google Scholar] [CrossRef]
- Maziviero, F.V.; Melo, D.M.A.; Medeiros, R.L.B.A.; Oliveira, Â.A.S.; Macedo, H.P.; Braga, R.M.; Morgado, E. Advancements and Prospects in Perovskite Solar Cells: From Hybrid to All-Inorganic Materials. Nanomaterials 2024, 14, 332. [Google Scholar] [CrossRef] [PubMed]
- Bu, T.; Liu, X.; Zhou, Y.; Yi, J.; Huang, X.; Luo, L.; Xiao, J.; Ku, Z.; Peng, Y.; Huang, F.; et al. A Novel Quadruple-Cation Absorber for Universal Hysteresis Elimination for High Efficiency and Stable Perovskite Solar Cells. Energy Environ. Sci. 2017, 10, 2509–2515. [Google Scholar] [CrossRef]
- Xing, Y.; Deng, Z.; Wang, Q.; Xiong, J.; Liu, X.; Huang, L.; Zhu, Y.; Zhang, J. Polymer Lewis Base for Improving the Charge Transfer in Tin–Lead Mixed Perovskite Solar Cells. Nanomaterials 2024, 14, 437. [Google Scholar] [CrossRef] [PubMed]
- Park, H.H. Modification of SnO2 Electron Transport Layer in Perovskite Solar Cells. Nanomaterials 2022, 12, 4326. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Pang, Z.; Quan, Y.; Han, D.; Zhang, X.; Ge, X.; Wang, F.; Sun, Y.; Yang, J.; Yang, L. A Synchronous Defect Passivation Strategy for Constructing High-Performance and Stable Planar Perovskite Solar Cells. Chem. Eng. J. 2021, 413, 127387. [Google Scholar] [CrossRef]
- Zhu, P.; Gu, S.; Luo, X.; Gao, Y.; Li, S.; Zhu, J.; Tan, H. Simultaneous Contact and Grain-Boundary Passivation in Planar Perovskite Solar Cells Using SnO2-KCl Composite Electron Transport Layer. Adv. Energy Mater. 2020, 10, 1903083. [Google Scholar] [CrossRef]
- Bi, H.; Liu, B.; He, D.; Bai, L.; Wang, W.; Zang, Z.; Chen, J. Interfacial Defect Passivation and Stress Release by Multifunctional KPF6 Modification for Planar Perovskite Solar Cells with Enhanced Efficiency and Stability. Chem. Eng. J. 2021, 418, 129375. [Google Scholar] [CrossRef]
- Dong, Y.; Shen, W.; Dong, W.; Bai, C.; Zhao, J.; Zhou, Y.; Huang, F.; Cheng, Y.B.; Zhong, J. Chlorobenzenesulfonic Potassium Salts as the Efficient Multifunctional Passivator for the Buried Interface in Regular Perovskite Solar Cells. Adv. Energy Mater. 2022, 12, 2200417. [Google Scholar] [CrossRef]
- Wen, H.; Zhang, Z.; Guo, Y.; Luo, W.; Si, S.; Yin, T.; Wu, H.; Huang, S. Synergistic Full-Scale Defect Passivation Enables High-Efficiency and Stable Perovskite Solar Cells. Adv. Energy Mater. 2023, 13, 2301813. [Google Scholar] [CrossRef]
- Kothandaraman, R.K.; Jiang, Y.; Feurer, T.; Tiwari, A.N.; Fu, F. Correction to: Near-Infrared-Transparent Perovskite Solar Cells and Perovskite-Based Tandem Photovoltaics (Small Methods, (2020), 4, 10, (2000395), 10.1002/Smtd.202000395). Small Methods 2022, 6, 2101538. [Google Scholar] [CrossRef]
- Song, S.; Joon, B.; Hörantner, M.T.; Lim, J.; Kang, G.; Park, M.; Young, J.; Snaith, H.J.; Park, T. Nano Energy Interfacial Electron Accumulation for Ef Fi Cient Homo-Junction Perovskite Solar Cells. Nano Energy 2016, 28, 269–276. [Google Scholar] [CrossRef]
- Wang, F.; Ma, J.; Duan, D.; Liang, X.; Zhou, K.; Sun, Y.; Wang, T.; Yang, G.; Pei, G.; Lin, H.; et al. Tailoring Ionic Liquid Chemical Structure for Enhanced Interfacial Engineering in Two-Step Perovskite Photovoltaics. Small 2023, 2307679. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Duan, D.; Zhou, K.; Xue, Y.Z.B.; Liang, X.; Zhou, X.; Ge, C.; Zhou, C.; Xiang, J.; Zhu, J.; et al. Ionic Liquid Engineering Enabled In-plane Orientated 1D Perovskite Nanorods for Efficient Mixed-dimensional Perovskite Photovoltaics. InfoMat 2023, 5, e12459. [Google Scholar] [CrossRef]
- Wang, F.; Duan, D.; Singh, M.; Sutter-Fella, C.M.; Lin, H.; Li, L.; Naumov, P.; Hu, H. Ionic Liquid Engineering in Perovskite Photovoltaics. Energy Environ. Mater. 2023, 6, e12435. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, S.; Fan, W.; Cheng, F.; Sun, H.; Kang, Z.; Zhang, Y. Pushing the Limit of Open-Circuit Voltage Deficit via Modifying Buried Interface in CsPbI3 Perovskite Solar Cells. Adv. Mater. 2023, 35, e2207172. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Q.; Zhang, C.; Gong, C.; Li, H.; Li, H.; Zhang, Z.; Yang, H.; Chen, J.; Zang, Z. Tailoring Multifunctional Anion Modifiers to Modulate Interfacial Chemical Interactions for Efficient and Stable Perovskite Solar Cells. Nano Energy 2022, 102, 107747. [Google Scholar] [CrossRef]
- Yi, X.; Zhang, Z.; Chang, A.; Mao, Y.; Luan, Y.; Lin, T.; Wei, Y.; Zhang, Y.; Wang, F.; Cao, S.; et al. Incorporating CsF into the PbI2 Film for Stable Mixed Cation-Halide Perovskite Solar Cells. Adv. Energy Mater. 2019, 9, 1901726. [Google Scholar] [CrossRef]
- Sun, Y.; Hu, R.; Wang, F.; Wang, T.; Liang, X.; Zhou, X.; Yang, G.; Li, Y.; Zhang, F.; Zhu, Q.; et al. Ionic Liquid-regulated PbI2 Layer and Defect Passivation for Efficient Perovskite Solar Cells. J. Mater. Chem. C 2024, 12, 5175–5183. [Google Scholar] [CrossRef]
- Guo, H.; Xiang, W.; Fang, Y.; Li, J.; Lin, Y. Molecular Bridge on Buried Interface for Efficient and Stable Perovskite Solar Cells. Angew. Chem. Int. Ed. 2023, 62, e202304568. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Huang, Y.; Chiu, W.; Huang, Y.; Chen, G.; Adugna, G.B.; Li, S.; Lin, F.; Lu, S.; Hsieh, H. Fluorinated Pentafulvalene-Fused Hole-Transporting Material Enhances the Performance of Perovskite Solar Cells with Efficiency Exceeding 23%. Adv. Funct. Mater. 2023, 33, 2306367. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, S.; Guo, T.; Du, D.; Tao, Y.; Zhang, L.; Liu, G.; Chen, X.; Ye, J.; Guo, Z.; et al. Dual Effect of Superhalogen Ionic Liquids Ensures Efficient Carrier Transport for Highly Efficient and Stable Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2022, 14, 28826–28833. [Google Scholar] [CrossRef] [PubMed]
- Luo, T.; Ye, G.; Chen, X.; Wu, H.; Zhang, W.; Chang, H. F-Doping-Enhanced Carrier Transport in the SnO2/Perovskite Interface for High-Performance Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2022, 14, 42093–42101. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zhou, K.; Liang, X.; Zhou, X.; Duan, D.; Ge, C.; Zhang, X.; Shi, Y.; Lin, H.; Zhu, Q.; et al. Revealing Size-Dependency of Ionic Liquid to Assist Perovskite Film Formation Mechanism for Efficient and Durable Perovskite Solar Cells. Small Methods 2023, 8, 2300210. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; Sun, Y.; Li, L.; Wang, T.; Kanda, H.; Liu, C.; Yang, Y.; Huang, S.; Asiri, A.M.; Chu, L.; et al. Crack-Free Monolayer Graphene Interlayer for Improving Perovskite Crystallinity and Energy Level Alignment in Ef Fi Cient Inverted Perovskite Solar Cells. Solar RRL 2022, 6, 2200484. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, R.; Wang, T.; Wang, F.; Li, Y.; Sun, Y.; Liang, X.; Zhou, X.; Yang, G.; Li, Q.; Zhang, F.; et al. Hexylammonium Acetate-Regulated Buried Interface for Efficient and Stable Perovskite Solar Cells. Nanomaterials 2024, 14, 653. https://doi.org/10.3390/nano14080653
Hu R, Wang T, Wang F, Li Y, Sun Y, Liang X, Zhou X, Yang G, Li Q, Zhang F, et al. Hexylammonium Acetate-Regulated Buried Interface for Efficient and Stable Perovskite Solar Cells. Nanomaterials. 2024; 14(8):653. https://doi.org/10.3390/nano14080653
Chicago/Turabian StyleHu, Ruiyuan, Taomiao Wang, Fei Wang, Yongjun Li, Yonggui Sun, Xiao Liang, Xianfang Zhou, Guo Yang, Qiannan Li, Fan Zhang, and et al. 2024. "Hexylammonium Acetate-Regulated Buried Interface for Efficient and Stable Perovskite Solar Cells" Nanomaterials 14, no. 8: 653. https://doi.org/10.3390/nano14080653
APA StyleHu, R., Wang, T., Wang, F., Li, Y., Sun, Y., Liang, X., Zhou, X., Yang, G., Li, Q., Zhang, F., Zhu, Q., Li, X., & Hu, H. (2024). Hexylammonium Acetate-Regulated Buried Interface for Efficient and Stable Perovskite Solar Cells. Nanomaterials, 14(8), 653. https://doi.org/10.3390/nano14080653