Greatly Enhanced Thermoelectric Performance of Flexible Cu2−xS Composite Film on Nylon by Se Doping
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Suarez, F.; Nozariasbmarz, A.; Vashaee, D.; Öztürk, M.C. Designing thermoelectric generators for self-powered wearable electronics. Energy Environ. Sci. 2016, 9, 2099–2113. [Google Scholar] [CrossRef]
- Sanin-Villa, D. Recent Developments in Thermoelectric Generation: A Review. Sustainability 2022, 14, 16821. [Google Scholar] [CrossRef]
- Shuvo, M.M.H.; Titirsha, T.; Amin, N.; Islam, S.K. Energy Harvesting in Implantable and Wearable Medical Devices for Enduring Precision Healthcare. Energies 2022, 15, 7495. [Google Scholar] [CrossRef]
- Snyder, G.J.; Toberer, E.S. Complex thermoelectrics. Nat. Mater. 2008, 7, 105–114. [Google Scholar] [CrossRef]
- Yang, S.; Qiu, P.; Chen, L.; Shi, X. Recent Developments in Flexible Thermoelectric Devices. Small Sci. 2021, 1, 202100005. [Google Scholar] [CrossRef]
- Torfs, T.; Leonov, V.; Hoof, C.V. Body-Heat Powered Autonomous Pulse Oximeter. In Proceedings of the 2006 IEEE Sensors, Daegu, Republic of Korea, 22–25 October 2006; pp. 427–430. [Google Scholar]
- Dresselhaus, M.S.; Chen, G.; Tang, M.Y.; Yang, R.G.; Lee, H.; Wang, D.Z.; Ren, Z.F.; Fleurial, J.P.; Gogna, P. New Directions for Low-Dimensional Thermoelectric Materials. Adv. Mater. 2007, 19, 1043–1053. [Google Scholar] [CrossRef]
- Bahk, J.-H.; Fang, H.; Yazawa, K.; Shakouri, A. Flexible thermoelectric materials and device optimization for wearable energy harvesting. J. Mater. Chem. C 2015, 3, 10362–10374. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, L.; Shi, X.L.; Shi, X.; Chen, L.; Dargusch, M.S.; Zou, J.; Chen, Z.G. Flexible Thermoelectric Materials and Generators: Challenges and Innovations. Adv. Mater. 2019, 31, e1807916. [Google Scholar] [CrossRef]
- Masoumi, S.; O’Shaughnessy, S.; Pakdel, A. Organic-based flexible thermoelectric generators: From materials to devices. Nano Energy 2022, 92, 106774. [Google Scholar] [CrossRef]
- Saghaei, J.; Fallahzadeh, A.; Yousefi, M.H. Improvement of electrical conductivity of PEDOT:PSS films by 2-Methylimidazole post treatment. Org. Electron. 2015, 19, 70–75. [Google Scholar] [CrossRef]
- Lindorf, M.; Mazzio, K.A.; Pflaum, J.; Nielsch, K.; Brütting, W.; Albrecht, M. Organic-based thermoelectrics. J. Mater. Chem. A 2020, 8, 7495–7507. [Google Scholar] [CrossRef]
- Jin, H.; Li, J.; Iocozzia, J.; Zeng, X.; Wei, P.C.; Yang, C.; Li, N.; Liu, Z.; He, J.H.; Zhu, T.; et al. Hybrid Organic–Inorganic Thermoelectric Materials and Devices. Angew. Chem. Int. Ed. 2019, 58, 15206–15226. [Google Scholar] [CrossRef] [PubMed]
- Varghese, T.; Dun, C.; Kempf, N.; Saeidi-Javash, M.; Karthik, C.; Richardson, J.; Hollar, C.; Estrada, D.; Zhang, Y. Flexible Thermoelectric Devices of Ultrahigh Power Factor by Scalable Printing and Interface Engineering. Adv. Funct. Mater. 2019, 30, 1905796. [Google Scholar] [CrossRef]
- Ferhat, M.; Nagao, J. Thermoelectric and transport properties of β-Ag2Se compounds. J. Appl. Phys. 2000, 88, 813–816. [Google Scholar] [CrossRef]
- Ding, Y.; Qiu, Y.; Cai, K.; Yao, Q.; Chen, S.; Chen, L.; He, J. High performance n-type Ag2Se film on nylon membrane for flexible thermoelectric power generator. Nat. Commun. 2019, 10, 841. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lou, Q.; Yang, J.; Cai, K.; Liu, Y.; Lu, Y.; Qiu, Y.; Lu, Y.; Wang, Z.; Wu, M.; et al. Exceptionally High Power Factor Ag2Se/Se/Polypyrrole Composite Films for Flexible Thermoelectric Generators. Adv. Funct. Mater. 2021, 32, 2106902. [Google Scholar] [CrossRef]
- Jiang, C.; Ding, Y.; Cai, K.; Tong, L.; Lu, Y.; Zhao, W.; Wei, P. Ultrahigh Performance of n-Type Ag2Se Films for Flexible Thermoelectric Power Generators. ACS Appl. Mater. Interfaces 2020, 12, 9646–9655. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Qi, R.; Chen, M.; Chen, H.; Xing, C.; Sui, F.; Gu, L.; He, W.; Zhang, Y.; Baba, T.; et al. Microstructurally Tailored Thin β-Ag2Se Films toward Commercial Flexible Thermoelectrics. Adv. Mater. 2022, 34, 2104786. [Google Scholar] [CrossRef]
- Hou, S.; Liu, Y.; Yin, L.; Chen, C.; Wu, Z.; Wang, J.; Luo, Y.; Xue, W.; Liu, X.; Zhang, Q.; et al. High performance wearable thermoelectric generators using Ag2Se films with large carrier mobility. Nano Energy 2021, 87, 106223. [Google Scholar] [CrossRef]
- Lu, Y.; Han, X.; Wei, P.; Liu, Y.; Wang, Z.; Zuo, X.; Zhao, W.; Cai, K. Nanoengineering approach toward ultrahigh power factor Ag2Se/polyvinylpyrrolidone composite film for flexible thermoelectric generator. Chem. Eng. J. 2024, 485, 149793. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Wang, Z.; Wei, P.; Zhao, W.; Chen, L.; Cai, K. High thermoelectric performance of flexible Ag/Ag2Se composite film on nylon for low-grade energy harvesting. J. Mater. Sci. Technol. 2024, 179, 79–85. [Google Scholar] [CrossRef]
- Mulla, R.; Rabinal, M.H.K. Copper Sulfides: Earth-Abundant and Low-Cost Thermoelectric Materials. Energy Technol. 2019, 7, 1800850. [Google Scholar] [CrossRef]
- He, Y.; Day, T.; Zhang, T.; Liu, H.; Shi, X.; Chen, L.; Snyder, G.J. High Thermoelectric Performance in Non-Toxic Earth-Abundant Copper Sulfide. Adv. Mater. 2014, 26, 3974–3978. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Long, Z.; Cheng, Y.; Zhou, M.; Chen, H.; Zhao, K.; Shi, X. Chemical bonding engineering for high-symmetry Cu2S-based materials with high thermoelectric performance. Mater. Today Phys. 2023, 32, 101028. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, B.-P.; Pei, J.; Liu, Y.-C.; Li, J.-F. Thermoelectric performance enhancement of Cu2S by Se doping leading to a simultaneous power factor increase and thermal conductivity reduction. J. Mater. Chem. C 2017, 5, 7845–7852. [Google Scholar] [CrossRef]
- Tang, Y.-Q.; Zhang, K.; Ge, Z.-H.; Feng, J. Facile synthesis and thermoelectric properties of Cu1.96S compounds. J. Solid State Chem. 2018, 265, 140–147. [Google Scholar] [CrossRef]
- Yang, M.; Liu, X.; Zhang, B.; Chen, Y.; Wang, H.; Yu, J.; Wang, G.; Xu, J.; Zhou, X.; Han, G. Phase Tuning for Enhancing the Thermoelectric Performance of Solution-Synthesized Cu2−xS. ACS Appl. Mater. Interfaces 2021, 13, 39541–39549. [Google Scholar] [CrossRef] [PubMed]
- Yue, Z.; Zhou, W.; Ji, X.; Wang, Y.; Guo, F. Thermoelectric performance of hydrothermally synthesized micro/nano Cu2−xS. Chem. Eng. J. 2022, 449, 137748. [Google Scholar] [CrossRef]
- Zuo, X.; Han, X.; Lu, Y.; Liu, Y.; Wang, Z.; Li, J.; Cai, K. Largely Enhanced Thermoelectric Power Factor of Flexible Cu2−xS Film by Doping Mn. Materials 2023, 16, 7159. [Google Scholar] [CrossRef]
- Liu, W.-D.; Shi, X.-L.; Gao, H.; Moshwan, R.; Xu, S.-D.; Wang, Y.; Yang, L.; Chen, Z.-G.; Zou, J. Kinetic condition driven phase and vacancy enhancing thermoelectric performance of low-cost and eco-friendly Cu2−xS. J. Mater. Chem. C 2019, 7, 5366–5373. [Google Scholar] [CrossRef]
- Zheng, L.-J.; Zhang, B.-P.; Li, H.-z.; Pei, J.; Yu, J.-B. Cu S superionic compounds: Electronic structure and thermoelectric performance enhancement. J. Alloys Compd. 2017, 722, 17–24. [Google Scholar] [CrossRef]
- Li, X.; Lou, Y.; Jin, K.; Fu, L.; Xu, P.; Shi, Z.; Feng, T.; Xu, B. Realizing zT>2 in Environment-Friendly Monoclinic Cu2S—Tetragonal Cu1.96S Nano-Phase Junctions for Thermoelectrics. Angew. Chem. Int. Ed. 2022, 61, e202212885. [Google Scholar] [CrossRef] [PubMed]
- Yue, Z.; Zhou, W.; Ji, X.; Zhang, F.; Guo, F. Enhanced thermoelectric properties of Ag doped Cu2S by using hydrothermal method. J. Alloys Compd. 2022, 919, 165830. [Google Scholar] [CrossRef]
- Wu, R.; Wang, D.P.; Kumar, V.; Zhou, K.; Law, A.W.K.; Lee, P.S.; Lou, J.; Chen, Z. MOFs-derived copper sulfides embedded within porous carbon octahedra for electrochemical capacitor applications. Chem. Commun. 2015, 51, 3109–3112. [Google Scholar] [CrossRef] [PubMed]
- Canava, B.; Vigneron, J.; Etcheberry, A.; Guillemoles, J.F.; Lincot, D. High resolution XPS studies of Se chemistry of a Cu(In, Ga)Se2 surface. Appl. Surf. Sci. 2002, 202, 8–14. [Google Scholar] [CrossRef]
- Zheng, Z.-H.; Zhang, D.-L.; Jabar, B.; Chen, T.-B.; Nisar, M.; Chen, Y.-F.; Li, F.; Chen, S.; Liang, G.-X.; Zhang, X.-H.; et al. Realizing high thermoelectric performance in highly (0l0)-textured flexible Cu2Se thin film for wearable energy harvesting. Mater. Today Phys. 2022, 24, 100659. [Google Scholar] [CrossRef]
- Patel, T.A.; Panda, E. Copper deficiency induced varying electronic structure and optoelectronic properties of Cu2−xS thin films. Appl. Surf. Sci. 2019, 488, 477–484. [Google Scholar] [CrossRef]
- Yu, Y.-Q.; Zhang, B.-P.; Ge, Z.-H.; Shang, P.-P.; Chen, Y.-X. Thermoelectric properties of Ag-doped bismuth sulfide polycrystals prepared by mechanical alloying and spark plasma sintering. Mater. Chem. Phys. 2011, 131, 216–222. [Google Scholar] [CrossRef]
- Nuriev, M.A.; Magerramov, A.M.; Shukyurova, A.A. Electrical Conductivity of Nanocomposites Based on Low-Density Polyethylene and Cu2S Nanoparticles. Surf. Eng. Appl. Electrochem. 2017, 54, 32–37. [Google Scholar] [CrossRef]
- Huang, W.; Zhu, H.; Liu, Q.; Duan, S.; Yang, M.; Liu, X.; Su, T. Enhanced thermoelectric performance of CoSbS via Se doping at dual Sb and S sites. J. Alloys Compd. 2024, 970, 172555. [Google Scholar] [CrossRef]
- Tang, Y.-Q.; Ge, Z.-H.; Feng, J. Synthesis and Thermoelectric Properties of Copper Sulfides via Solution Phase Methods and Spark Plasma Sintering. Crystals 2017, 7, 141. [Google Scholar] [CrossRef]
- Chen, X.-Q.; Fan, S.-J.; Han, C.; Wu, T.; Wang, L.-J.; Jiang, W.; Dai, W.; Yang, J.-P. Multiscale architectures boosting thermoelectric performance of copper sulfide compound. Rare Met. 2021, 40, 2017–2025. [Google Scholar] [CrossRef]
- Zhao, J.; Zhao, X.; Guo, R.; Zhao, Y.; Yang, C.; Zhang, L.; Liu, D.; Ren, Y. Preparation and Characterization of Screen-Printed Cu2S/PEDOT:PSS Hybrid Films for Flexible Thermoelectric Power Generator. Nanomaterials 2022, 12, 2430. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Yan, Z.; Zhao, Y.; Zhang, Z.; Zhang, B.; Shi, P.; Xue, C. Facile self-supporting and flexible Cu2S/PEDOT:PSS composite thermoelectric film with high thermoelectric properties for body energy harvesting. Results Phys. 2021, 31, 105061. [Google Scholar] [CrossRef]
- Li, J.; Gao, J.; Jia, L.; Miao, L.; Zhu, S.; Zhang, Z.; Liu, C.; Wang, X. Realization of high output power density in solution-processed flexible α-Cu2Se film by compositional off-stoichiometry and optimization of length. Appl. Surf. Sci. 2023, 619, 156719. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, Y.; Li, Y.; Cai, K. The influence of Ga doping on preparation and thermoelectric properties of flexible Ag2Se films. Compos. Commun. 2021, 27, 100895. [Google Scholar] [CrossRef]
- Lu, Y.; Ding, Y.; Qiu, Y.; Cai, K.; Yao, Q.; Song, H.; Tong, L.; He, J.; Chen, L. Good Performance and Flexible PEDOT:PSS/Cu2Se Nanowire Thermoelectric Composite Films. ACS Appl. Mater. Interfaces 2019, 11, 12819–12829. [Google Scholar]
- Lu, Y.; Qiu, Y.; Jiang, Q.; Cai, K.; Du, Y.; Song, H.; Gao, M.; Huang, C.; He, J.; Hu, D. Preparation and Characterization of Te/Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate)/Cu7Te4 Ternary Composite Films for Flexible Thermoelectric Power Generator. ACS Appl. Mater. Interfaces 2018, 10, 42310–42319. [Google Scholar] [CrossRef]
Phase (mol%) | y = 0 | y = 0.01 | y = 0.02 | y = 0.03 |
---|---|---|---|---|
T-Cu1.96S | 0.28 | 0.34 | 0.43 | 0.46 |
M-Cu2S | 0.72 | 0.66 | 0.57 | 0.54 |
T:M | 0.39:1 | 0.51:1 | 0.75:1 | 0.85:1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuo, X.; Han, X.; Wang, Z.; Liu, Y.; Li, J.; Zhang, M.; Huang, C.; Cai, K. Greatly Enhanced Thermoelectric Performance of Flexible Cu2−xS Composite Film on Nylon by Se Doping. Nanomaterials 2024, 14, 950. https://doi.org/10.3390/nano14110950
Zuo X, Han X, Wang Z, Liu Y, Li J, Zhang M, Huang C, Cai K. Greatly Enhanced Thermoelectric Performance of Flexible Cu2−xS Composite Film on Nylon by Se Doping. Nanomaterials. 2024; 14(11):950. https://doi.org/10.3390/nano14110950
Chicago/Turabian StyleZuo, Xinru, Xiaowen Han, Zixing Wang, Ying Liu, Jiajia Li, Mingcheng Zhang, Changjun Huang, and Kefeng Cai. 2024. "Greatly Enhanced Thermoelectric Performance of Flexible Cu2−xS Composite Film on Nylon by Se Doping" Nanomaterials 14, no. 11: 950. https://doi.org/10.3390/nano14110950
APA StyleZuo, X., Han, X., Wang, Z., Liu, Y., Li, J., Zhang, M., Huang, C., & Cai, K. (2024). Greatly Enhanced Thermoelectric Performance of Flexible Cu2−xS Composite Film on Nylon by Se Doping. Nanomaterials, 14(11), 950. https://doi.org/10.3390/nano14110950