Flexible Metamaterial Quarter-Wave Plate and Its Application in Blocking the Backward Reflection of Terahertz Waves
Abstract
:1. Introduction
2. QWP’s Design and Simulations
3. Measurement Results of QWP Transmission Performance
4. Application of QWP in Blocking Backward Reflection
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Krügener, K.; Ornik, J.; Schneider, L.M.; Jäckel, A.; Koch-Dandolo, C.L.; Castro-Camus, E.; Riedl-Siedow, N.; Koch, M.; Viöl, W. Terahertz Inspection of Buildings and Architectural Art. Appl. Sci. 2020, 10, 5166. [Google Scholar] [CrossRef]
- Khushbu, S.; Yashini, M.; Rawson, A.; Sunil, C.K. Recent Advances in Terahertz Time-Domain Spectroscopy and Imaging Techniques for Automation in Agriculture and Food Sector. Food Anal. Methods 2021, 15, 498–526. [Google Scholar] [CrossRef]
- Zhang, M.; Ma, Z.; Yang, M.; Zhao, J.; Wang, B.; Hou, W.; Zhang, W.; Li, C.; Luo, Z. Polarization-Independent Multi-Resonance with High Q-Factor for Highly Sensitive Terahertz Sensors Based on All-Dielectric Metasurface. IEEE Photonics J. 2022, 14, 4845408. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, Y.; Shao, Y.; Han, G.; Zhang, J.; Hao, Y. Actively Tunable Fano Resonance Based on a Bowtie-Shaped Black Phosphorus Terahertz Sensor. Nanomaterials 2021, 11, 1442. [Google Scholar] [CrossRef] [PubMed]
- Akyildiz, I.F.; Han, C.; Hu, Z.; Nie, S.; Jornet, J.M. Terahertz Band Communication: An Old Problem Revisited and Research Directions for the Next Decade. IEEE Trans. Commun. 2022, 70, 4250–4285. [Google Scholar] [CrossRef]
- Shehata, M.; Wang, K.; Webber, J.; Fujita, M.; Nagatsuma, T.; Withayachumnankul, W. IEEE 802.15.3d-Compliant Waveforms for Terahertz Wireless Communications. J. Light. Technol. 2021, 39, 7748–7760. [Google Scholar] [CrossRef]
- Liu, K.; Luo, C.; Yi, J.; Wang, H. Target Detection Method Using Heterodyne Single-Photon Radar at Terahertz Frequencies. IEEE Geosci. Remote Sens. Lett. 2021, 19, 3505605. [Google Scholar] [CrossRef]
- Qin, X.; Deng, B.; Wang, H. Micro-Doppler Feature Extraction of Rotating Structures of Aircraft Targets with Terahertz Radar. Remote Sens. 2022, 14, 3856. [Google Scholar] [CrossRef]
- Torkaman, P.; Yadav, G.S.; Wang, P.-C.; Lu, T.-Y.; Miao, X.-W.; Hsiao, F.-S.; Feng, K.-M.; Yang, S.-H. A 5G/Sub-Terahertz Heterogeneous Communication Network. IEEE Access 2022, 10, 65572–65584. [Google Scholar] [CrossRef]
- Wu, G.-B.; Chan, K.F.; Shum, K.M.; Chan, C.H. Millimeter-Wave and Terahertz OAM Discrete-Lens Antennas for 5G and Beyond. IEEE Commun. Mag. 2022, 60, 34–39. [Google Scholar] [CrossRef]
- Chen, H.; Sarieddeen, H.; Ballal, T.; Wymeersch, H.; Alouini, M.-S.; Al-Naffouri, T.Y. A Tutorial on Terahertz-Band Localization for 6G Communication Systems. IEEE Commun. Surv. Tutor. 2022, 24, 1780–1815. [Google Scholar] [CrossRef]
- Sen, P.; Siles, J.V.; Thawdar, N.; Jornet, J.M. Multi-kilometre and multi-gigabit-per-second sub-terahertz communications for wireless backhaul applications. Nat. Electron. 2022, 6, 164–175. [Google Scholar] [CrossRef]
- Federici, J.; Moeller, L. Review of terahertz and subterahertz wireless communications. J. Appl. Phys. 2010, 107, 111101. [Google Scholar] [CrossRef] [Green Version]
- Noferesti, M.; Djerafi, T. A Tunable Ferrite Isolator for 30 GHz Millimeter-Wave Applications. IEEE Trans. Magn. 2021, 57, 4001707. [Google Scholar] [CrossRef]
- Laur, V.; Gouavogui, J.P.; Balde, B. C-Band Hybrid 3-D-Printed Microwave Isolator. IEEE Trans. Microw. Theory Tech. 2021, 69, 1579–1585. [Google Scholar] [CrossRef]
- Navarathna, R.; Le, D.T.; Hamann, A.R.; Nguyen, H.D.; Stace, T.M.; Fedorov, A. Passive Superconducting Circulator on a Chip. Phys. Rev. Lett. 2023, 130, 037001. [Google Scholar] [CrossRef] [PubMed]
- Janaszek, B.; Kieliszczyk, M.; Szczepański, P. Nonlocality-Enabled Magnetic Free Optical Isolation in Hyperbolic Metamaterials. Materials 2021, 14, 2865. [Google Scholar] [CrossRef]
- Zeng, X.; Russell, P.S.; Wolff, C.; Frosz, M.H.; Wong, G.K.L.; Stiller, B. Nonreciprocal vortex isolator via topology-selective stimulated Brillouin scattering. Sci. Adv. 2022, 8, eabq6064. [Google Scholar] [CrossRef]
- Shalaby, M.; Peccianti, M.; Ozturk, Y.; Morandotti, R. A magnetic non-reciprocal isolator for broadband terahertz operation. Nat. Commun. 2013, 4, 1558. [Google Scholar] [CrossRef] [Green Version]
- Shang, J.; Li, H.; Jiang, G.; Zhang, Z.; Su, L.; Shen, H.; Jin, Z.; Wu, A. Temperature dependent refractive index and dielectric modulation of paramagnetic magneto-optic PrF3 crystal with terahertz time-domain spectroscopy. Phys. B Condens. Matter 2021, 608, 412900. [Google Scholar] [CrossRef]
- Tan, Z.; Fan, F.; Zhao, D.; Li, S.; Wang, X.; Chang, S. Linear-polarized terahertz isolator by breaking the gyro-mirror symmetry in cascaded magneto-optical metagrating. Nanophotonics 2021, 10, 4141–4148. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, W.; Li, X. A 210-GHz Magnetless Nonreciprocal Isolator in 130-nm SiGe BiCMOS Based on Resistor-Free Unidirectional Ring Resonators. IEEE Microw. Wirel. Compon. Lett. 2020, 30, 524–527. [Google Scholar] [CrossRef]
- Kazemi, A.H.; Mokhtari, A.; Zamani, M. Ultrafast tunable integrated Faraday isolator based on optical pumping in a graphene–InSb–graphene structure. Appl. Opt. 2020, 59, 7745. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Fan, F.; Li, T.; Tan, Z.; Cheng, J.; Chang, S. Terahertz magneto-optical isolator based on graphene-silicon waveguide. Sci. China Inf. Sci. 2021, 65, 169401. [Google Scholar] [CrossRef]
- Yuan, M.; Zhao, D. A terahertz isolator based on a silicon heterojunction photonic crystal. Optik 2015, 126, 4472–4474. [Google Scholar] [CrossRef]
- Zhou, Y.; Dong, Y.-Q.; Zhang, K.; Peng, R.-W.; Hu, Q.; Wang, M. Non-reciprocal transmission of terahertz waves through a photonic crystal cavity with graphene. Europhys. Lett. 2014, 107, 54001. [Google Scholar] [CrossRef]
- Almpanis, E.; Zouros, G.P.; Tsakmakidis, K.L. Active THz metasurfaces for compact isolation. J. Opt. Soc. Am. B 2021, 38, C191–C197. [Google Scholar] [CrossRef]
- Tan, Z.; Fan, F.; Guan, S.; Wang, H.; Zhao, D.; Ji, Y.; Chang, S. Terahertz Spin-Conjugate Symmetry Breaking for Nonreciprocal Chirality and One-Way Transmission Based on Magneto-Optical Moiré Metasurface. Adv. Sci. 2022, 10, 2204916. [Google Scholar] [CrossRef]
- Mendis, R.; Nagai, M.; Zhang, W.; Mittleman, D.M. Artificial dielectric polarizing-beamsplitter and isolator for the terahertz region. Sci. Rep. 2017, 7, 5909. [Google Scholar] [CrossRef]
- Ahmadivand, A.; Gerislioglu, B.; Ahuja, R.; Mishra, Y.K. Terahertz plasmonics: The rise of toroidal metadevices towards immunobiosensings. Mater. Today 2020, 32, 108–130. [Google Scholar] [CrossRef]
- Liang, W.; Xiao, Z.; Xu, H.; Deng, H.-D.; Li, H.; Chen, W.; Liu, Z.; Long, Y. Ultranarrow-bandwidth planar hot electron photodetector based on coupled dual Tamm plasmons. Opt. Express 2020, 28, 31330–31344. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, L.; Gu, Y.; Mehmood, M.Q.; Gong, Y.; Srivastava, A.; Jian, L.; Venkatesan, T.; Qiu, C.-W.; Hong, M. Switchable Ultrathin Quarter-wave Plate in Terahertz Using Active Phase-change Metasurface. Sci. Rep. 2015, 5, 15020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, Z.; Zhao, Y.; Zhang, Y.; Cai, W.; Fan, Y.; Wang, Z.; Cheng, X. High-efficiency Modulation of Broadband Polarization Conversion with a Reconfigurable Chiral Metasurface. Nanoscale Adv. 2022, 4, 4344–4350. [Google Scholar] [CrossRef] [PubMed]
- Kowerdziej, R.; Olifierczuk, M.; Salski, B.; Parka, J. Tunable negative index metamaterial employing in-plane switching mode at terahertz frequencies. Liq. Cryst. 2012, 39, 827–831. [Google Scholar] [CrossRef]
- Earl, S.K.; James, T.D.; Davis, T.J.; McCallum, J.C.; Marvel, R.E.; Haglund, R.F.; Roberts, A. Tunable optical antennas enabled by the phase transition in vanadium dioxide. Opt. Express 2013, 21, 27503–27508. [Google Scholar] [CrossRef]
- Yahiaoui, R.; Guillet, J.P.; De Miollis, F.; Mounaix, P. Ultra-flexible multiband terahertz metamaterial absorber for conformal geometry applications. Opt. Lett. 2013, 38, 4988–4990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, J.; Xie, Z.; Wang, S.; Wang, X.; Kan, Q.; Zhang, Y. Terahertz polarization modulator based on metasurface. J. Opt. 2015, 17, 105107. [Google Scholar] [CrossRef]
- Nebioğlu, M.A.; Takan, T.; Altan, H.; Demirhan, Y.; Alaboz, H.; Özyüzer, L.; Sabah, C. An indium tin oxide metasurface filter for terahertz applications: Design, fabrication, and characterization. Mod. Phys. Lett. B 2017, 31, 1750074. [Google Scholar] [CrossRef] [Green Version]
- Han, N.R.; Chen, Z.C.; Lim, C.S.; Ng, B.; Hong, M.H. Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates. Opt. Express 2011, 19, 6990–6998. [Google Scholar] [CrossRef]
- Yao, H.; Mei, H.; Zhang, W.; Zhong, S.; Wang, X. Theoretical and Experimental Research on Terahertz Metamaterial Sensor with Flexible Substrate. IEEE Photonics J. 2021, 14, 3700109. [Google Scholar] [CrossRef]
- Liu, D.; Lv, T.; Dong, G.; Liu, C.; Liu, Q.; Zhu, Z.; Li, Y.; Guan, C.; Shi, J. Broadband and wide angle quarter-wave plate based on single-layered anisotropic terahertz metasurface. Opt. Commun. 2020, 483, 126629. [Google Scholar] [CrossRef]
- Ako, R.T.; Upadhyay, A.; Withayachumnankul, W.; Bhaskaran, M.; Sriram, S. Dielectrics for Terahertz Metasurfaces: Material Selection and Fabrication Techniques. Adv. Opt. Mater. 2019, 8, 1900750. [Google Scholar] [CrossRef]
- Han, Z.; Ohno, S.; Tokizane, Y.; Nawata, K.; Notake, T.; Takida, Y.; Minamide, H. Off-resonance and in-resonance metamaterial design for a high-transmission terahertz-wave quarter-wave plate. Opt. Lett. 2018, 43, 2977–2980. [Google Scholar] [CrossRef] [PubMed]
- McMaster, W.H. Polarization and the Stokes Parameters. Am. J. Phys. 1954, 22, 351–362. [Google Scholar] [CrossRef]
- Loo, Y.L.; Guo, B.; Ong, C.K. Substrateless ultra-thin quarter meta-waveplate based on Babinet’s Principle. J. Opt. 2018, 20, 065101. [Google Scholar] [CrossRef]
- Chen, S.; Fan, F.; Wang, X.; Wu, P.; Zhang, H.; Chang, S. Terahertz isolator based on nonreciprocal magneto-metasurface. Opt. Express 2015, 23, 1015–1024. [Google Scholar] [CrossRef] [PubMed]
- Tamagnone, M.; Moldovan, C.; Poumirol, J.-M.; Kuzmenko, A.B.; Ionescu, A.M.; Mosig, J.R.; Perruisseau-Carrier, J. Near optimal graphene terahertz non-reciprocal isolator. Nat. Commun. 2016, 7, 11216. [Google Scholar] [CrossRef]
- Lin, S.; Silva, S.; Zhou, J.; Talbayev, D. A One-Way Mirror: High-Performance Terahertz Optical Isolator Based on Magnetoplasmonics. Adv. Opt. Mater. 2018, 6, 1800572. [Google Scholar] [CrossRef]
- Portela, G.; Dmitriev, V.; Zimmer, D. Ferromagnetic resonance isolator based on a photonic crystal structure with terahertz vortices. Photonic Netw. Commun. 2019, 39, 47–53. [Google Scholar] [CrossRef]
- Keshock, E.; Peng, P.; Zhou, J.; Talbayev, D. Nonreciprocal Fabry-Perot effect and performance enhancement in a magneto-optical InSb-based Faraday terahertz isolator. Opt. Express 2020, 28, 38280–38292. [Google Scholar] [CrossRef]
- Ji, Y.; Fan, F.; Tan, Z.; Chang, S. Terahertz Nonreciprocal Isolator Based on Magneto-Plasmon and Destructive Interference at Room Temperature. Front. Phys. 2020, 8, 334. [Google Scholar] [CrossRef]
- Yuan, S.; Chen, L.; Wang, Z.; Deng, W.; Hou, Z.; Zhang, C.; Yu, Y.; Wu, X.; Zhang, X. On-chip terahertz isolator with ultrahigh isolation ratios. Nat. Commun. 2021, 12, 5570. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Li, J.; Sun, J.; Ge, L.; Xu, D.; Zhong, K.; Yao, J. A high-performance terahertz back-reflections blocker based on wire grid and metasurface quarter-wave plate. Results Phys. 2022, 33, 105183. [Google Scholar] [CrossRef]
Time | Frequency | Author | Structure | Blocking Efficiency | Insertion Loss |
---|---|---|---|---|---|
2015 | Tunable | Chen [46] | THz isolator with InSb | 43 dB | 1.79 dB |
2016 | 2.9 THz | Tamagnone [47] | THz isolator with graphene | 20 dB | 7.5 dB |
2017 | 0.42 THz | Mendis [29] | QWP and polarizer made with metal plates | 52 dB | 0.97 dB |
2018 | Tunable | Lin [48] | THz isolator with InSb | 35 dB | 6.2 dB |
2020 | 106.6 GHz | Portela [49] | Photonic crystal | 15 dB | 1.68 dB |
2020 | 1.2 THz | Keshock [50] | Faraday isolator with InSb | 18.8 dB | 12.6 dB |
2020 | 2.136 THz | Ji [51] | THz isolator with InSb | 55 dB | 3.92 dB |
2021 | 0.47 THz | Yuan [52] | On-chip isolator with InSb | 52 dB | 7.5 dB |
2022 | 1.51 THz | Sun [53] | H-shaped metasurface QWP and polarizer | 50.7 dB | 1.65 dB |
2023 | 1.73 THz | This paper | U-shaped metamaterial QWP and polarizer | 58 dB | 1.4 dB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, J.; Liu, Y.-Q.; Li, J.; Zhang, X.; Cai, H.; Zhu, X.; Yin, H. Flexible Metamaterial Quarter-Wave Plate and Its Application in Blocking the Backward Reflection of Terahertz Waves. Nanomaterials 2023, 13, 1279. https://doi.org/10.3390/nano13071279
Sun J, Liu Y-Q, Li J, Zhang X, Cai H, Zhu X, Yin H. Flexible Metamaterial Quarter-Wave Plate and Its Application in Blocking the Backward Reflection of Terahertz Waves. Nanomaterials. 2023; 13(7):1279. https://doi.org/10.3390/nano13071279
Chicago/Turabian StyleSun, Jinhai, Yong-Qiang Liu, Jining Li, Xutao Zhang, He Cai, Xianli Zhu, and Hongcheng Yin. 2023. "Flexible Metamaterial Quarter-Wave Plate and Its Application in Blocking the Backward Reflection of Terahertz Waves" Nanomaterials 13, no. 7: 1279. https://doi.org/10.3390/nano13071279
APA StyleSun, J., Liu, Y.-Q., Li, J., Zhang, X., Cai, H., Zhu, X., & Yin, H. (2023). Flexible Metamaterial Quarter-Wave Plate and Its Application in Blocking the Backward Reflection of Terahertz Waves. Nanomaterials, 13(7), 1279. https://doi.org/10.3390/nano13071279