All-Silicon Photoelectric Biosensor on Chip Based on Silicon Nitride Waveguide with Low Loss
Abstract
:1. Introduction
2. System Design and Device Structure
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gavela, A.F.; García, D.G.; Ramirez, J.C.; Lechuga, L.M. Last Advances in Silicon-Based Optical Biosensors. Sensors 2016, 16, 285. [Google Scholar] [CrossRef] [Green Version]
- Dastgeer, G.; Shahzad, Z.M.; Chae, H.; Kim, Y.H.; Ko, B.M.; Eom, J. Bipolar Junction Transistor Exhibiting Excellent Output Characteristics with a Prompt Response against the Selective Protein. Adv. Funct. Mater. 2022, 32, 38. [Google Scholar] [CrossRef]
- Dastgeer, G.; Afzal, A.; Jaffery, S.; Imran, M.; Assiri, M.; Nisar, S. Gate modulation of the spin current in gra-phene/WSe2 van der Waals heterostructure at room temperature. J. Alloy. Compd. 2022, 919, 165815. [Google Scholar] [CrossRef]
- Mignani, A.G.; Baldini, F. Biomedical sensors using optical fibres. Rep. Prog. Phys. 1996, 59, 1–28. [Google Scholar] [CrossRef]
- Correia, R.; James, S.W.; Lee, S.-W.; Morgan, S.P.; Korposh, S. Biomedical application of optical fibre sensors. J. Opt. 2018, 20, 073003. [Google Scholar] [CrossRef]
- Pospíšilová, M.; Kuncová, G.; Trögl, J. Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors. Sensors 2015, 15, 25208–25259. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wolfbeis, O. Fiber-optic chemical sensors and biosensors. Anal. Chem. 2016, 88, 203–227. [Google Scholar] [CrossRef]
- Krupin, O.; Wong, W.R.; Beland, P.; Adikan, F.R.M.; Berini, P. Long-Range Surface Plasmon-Polariton Waveguide Bi-osensors for Disease Detection. J. Light. Technol. 2016, 34, 4673–4681. [Google Scholar] [CrossRef]
- Wu, B.; Lu, Y.; Hao, C.; Duan, L.; Musideke, M.; Yao, J. A photonic crystal fiber sensor based on differential optical absorption spectroscopy for mixed gases detection. Optik 2014, 125, 2909–2911. [Google Scholar] [CrossRef]
- Bahrami, F.; Maisonneuve, M.; Meunier, M.; Aitchison, J.S.; Mojahedi, M. An improved refractive index sensor based on genetic optimization of plasmon waveguide resonance. Opt. Express 2013, 21, 20863–20872. [Google Scholar] [CrossRef]
- Sudarsono, S.; Yudoyono, G.; Prajitno, G.; Sunarno, H.; Rohedi, A.Y.; Indarto, B.; Pramono, Y.H. Detection of salinity in the process of heating seawater by using a directional coupler of the multimode plastic optical fiber with a plane mirror as a reflector. J. Opt. 2020, 49, 48–52. [Google Scholar] [CrossRef]
- Liu, Q.; Gu, Z.; Park, M.; Chung, J. Experimental demonstration of highly sensitive optical sensor based on grat-ing-assisted light coupling between strip and slot waveguides. Opt. Express 2016, 24, 12549. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.; Wang, X.; Frandsen, L.H. Optical temperature sensor with enhanced sensitivity by employing hybrid waveguides in a silicon Mach-Zehnder interferometer. Opt. Express 2016, 24, 16349–16356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okhai, T.A.; Snyman, L.W.; Polleux, J.-L. Wavelength dispersion characteristics of integrated silicon avalanche LEDs: Potential applications in futuristic on-chip micro- and nano-biosensors. SPIE 2017, 10036, 26–47. [Google Scholar] [CrossRef]
- Okhai, T.A.; Snyman, L.W.; Polleux, J.-L. Wavelength dispersion phenomena observed for emitted optical radiation from a p+nn+ silicon avalanche mode light-emitting device in a radio frequency bipolar-integrated circuitry. Opt. Eng. 2019, 58, 017104. [Google Scholar] [CrossRef]
- Okhai, T.; Snyman, L. Realizing micro-and nano-optical biosensors on chip. Proc. SPIE 2019, 11043, 1104308. [Google Scholar]
- Zhang, J.; Luo, C.; Zhao, Z. Design and Application of Integrated Optics Sensor for Measurement of Intense Pulsed Electric Field. J. Light. Technol. 2019, 37, 1440–1448. [Google Scholar] [CrossRef]
- Xu, K.; Chen, Y.; Okhai, T.A.; Snyman, L.W. Micro optical sensors based on avalanching silicon light-emitting devices monolithically integrated on chips. Opt. Mater. Express 2019, 9, 3985–3997. [Google Scholar] [CrossRef]
- Chaudhuri, R.; Song, Y.; Seo, S. Heterogeneously integrated optical detection platform for on-chip sensing applica-tions. J. Opt. 2015, 17, 105804. [Google Scholar] [CrossRef]
- Xu, K.; Huang, L.; Zhang, Z.; Zhao, J.; Zhang, Z.; Snyman, L.W.; Swart, J.W. Light emission from a poly-silicon device with carrier injection engineering. Mater. Sci. Eng. B 2018, 231, 28–31. [Google Scholar] [CrossRef]
- Badri, S.H.; Gilarlue, M. Coupling Si3N4 waveguide to SOI waveguide using transformation optics. Opt. Commun. 2019, 460, 125089. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.; Ding, H.; Zhou, P.; Wang, Y.; Su, B. Electrochemiluminescence Waveguide in Single Crystalline Molecular Wires. Angew. Chem. Int. Ed. 2020, 59, 6745–6749. [Google Scholar] [CrossRef]
- Xu, L.; Liu, N.; Zhou, S.; Zhang, L.; Li, J. Dual-spectroscopy technique based on quartz crystal tuning fork detector. Sens. Actuators A: Phys. 2020, 304, 111873. [Google Scholar] [CrossRef]
- Bai, R.; Zhang, C.; Liu, Z.; Chen, X.; Chen, H. Electric field effects on organic photovoltaic heterojunction in-terfaces: The model case of pentacene/C60. J. Theor. Comput. Chem. 2020, 1186, 112914. [Google Scholar] [CrossRef]
- Yamada, S.; Shirayanagi, Y.; Narihara, T.; Kumada, M.; Porponth, S.; Ichikawa, Y.; Miyajima, S.; Konagai, M. Photovoltaic effect in Si/SiO2 superlattice microdisk array solar cell structure. Superlattices Microstruct. 2020, 145, 106640. [Google Scholar] [CrossRef]
- Zheng, Z.; Luo, Q.; Xu, K.; Liu, Z.; Zhu, K. All-silicon PIN photodetector based on black silicon microstructure. Opto-Electron. Eng. 2021, 48, 200364. [Google Scholar]
- Song, F.; Xiao, J.; Xie, A.J.; Seo, S.-W. A polymer waveguide grating sensor integrated with a thin-film photodetector. J. Opt. 2013, 16, 015503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z. Research progress of silicon nitride ceramic. Mater. Sci. Technol. 2009, 17, 155–158. [Google Scholar]
- Fan, Z.; Chen, Z.; Zhou, X.; He, X.; Jiang, S.; Dong, J. Recent advances in silicon nitride-based photonic devices and applications. Chin. Opt. 2021, 14, 0998–1018. [Google Scholar]
- Tang, Y.; Liu, H. Study of Goos-Hanchen displacement and evanescent wave’s depth penetration based on the polarization. Basic Sci. J. Text. Univ. 2003, 16, 320–322. [Google Scholar]
- Lou, J.; Xu, H.-Z.; Xu, B.; Huang, J.; Li, B.-C.; Shen, W.-M. Fiber-optic evanescent wave sensor with a segmented structure. Appl. Opt. 2014, 53, 4200–4205. [Google Scholar] [CrossRef] [PubMed]
- Kishore, P.; Dinakar, D.; Rao, P.V.; Srimannarayana, K. Study the effect of fiber-dia on the alongside dual-plastic optical fiber vibration sensor. J. Opt. 2015, 44, 128–135. [Google Scholar] [CrossRef]
- Ai, K.; Cheng, J.; Zhu, K.; Wu, K.; Liu, Z.; Liu, Z.; Zhao, J.; Huang, L.; Xu, K. Design and realization of a novel poly-silicon light-emitting device based on standard CMOS technology. Chin. J. Lasers 2020, 47, 0701027. [Google Scholar]
- Xu, K.; Li, G.P. A Three-Terminal Silicon-PMOSFET-Like Light-Emitting Device (LED) for Optical Intensity Modulation. IEEE Photon- J. 2012, 4, 2159–2168. [Google Scholar] [CrossRef]
- Huang, B.; Zhang, X.; Wang, W.; Dong, Z.; Guan, N.; Zhang, Z.; Chen, H. CMOS monolithic optoelectronic integrated circuit for on-chip optical interconnection. Opt. Commun. 2011, 284, 3924–3927. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, C.; Fan, D.; Zhou, A.; Zhao, Y. Fiber cavity ring-down refractive index sensing method based on frequency-shifted interferometry. Laser Optoelectron. Prog. 2019, 56, 170627. [Google Scholar] [CrossRef]
- Wu, D.; Huang, W.; Wang, G.-Y.; Fu, J.-Y.; Chen, Y.-Y. In-line fiber Fabry–Perot refractive index tip sensor based on photonic crystal fiber and spectrum differential integration method. Opt. Commun. 2014, 313, 270–275. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, H.; Wang, R.; Su, D.; Guo, T.; Feng, Z.; Hu, M.; Qiao, X. Simultaneous Measurement of Refractive Index and Temperature Using a Michelson Fiber Interferometer With a Hi-Bi Fiber Probe. IEEE Sens. J. 2013, 13, 2061–2065. [Google Scholar] [CrossRef]
Type | ηQ | ηW | Driving Voltage | Driving Current | References |
---|---|---|---|---|---|
MOS_like | 1.47 × 10−7 | 8.03 × 10−9 | 42 V | 55 mA | [34] |
Si_LED | \ | 2.4 × 10−8 | 9.8 V | 130 mA | [35] |
Cascade | 5.78 × 10−5 | 5.4 × 10−6 | 20 V | 20 mA | This work |
Wavelength | Si3N4 | SiO2 | Detection Range | Refractive Index |
---|---|---|---|---|
n1(Core) | n2(Clad) | (TL = −3 dB) | ||
550 nm | 2.033 | 1.46 | n > 1.47 | n = 1.78 |
580 nm | 2.029 | 1.459 | n > 1.53 | n = 1.79 |
620 nm | 2.024 | 1.457 | n > 1.55 | n = 1.77 |
680 nm | 2.018 | 1.456 | n > 1.46 | n = 1.79 |
770 nm | 2.012 | 1.454 | n > 1.52 | n = 1.77 |
Average | \ | \ | n > 1.52 | n = 1.78 |
Wavelength | Sensitivity | ||
---|---|---|---|
n < 1.63 | 1.63 < n < 1.73 | 1.73 < n < 1.83 | |
550 nm | 1.14 dB/RIU | 9.80 dB/RIU | 31.39 dB/RIU |
580 nm | 1.38 dB/RIU | 7.57 dB/RIU | 34.47 dB/RIU |
620 nm | 0.71 dB/RIU | 13.73 dB/RIU | 34.48 dB/RIU |
680 nm | 2.62 dB/RIU | 7.98 dB/RIU | 31.35 dB/RIU |
770 nm | 1.57 dB/RIU | 14.82 dB/RIU | 24.42 dB/RIU |
Average | 1.26 dB/RIU | 10.68 dB/RIU | 31.26 dB/RIU |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Y.; Luo, Q.; Chen, Y.; Xu, K. All-Silicon Photoelectric Biosensor on Chip Based on Silicon Nitride Waveguide with Low Loss. Nanomaterials 2023, 13, 914. https://doi.org/10.3390/nano13050914
Tang Y, Luo Q, Chen Y, Xu K. All-Silicon Photoelectric Biosensor on Chip Based on Silicon Nitride Waveguide with Low Loss. Nanomaterials. 2023; 13(5):914. https://doi.org/10.3390/nano13050914
Chicago/Turabian StyleTang, Yu, Qian Luo, Yuxing Chen, and Kaikai Xu. 2023. "All-Silicon Photoelectric Biosensor on Chip Based on Silicon Nitride Waveguide with Low Loss" Nanomaterials 13, no. 5: 914. https://doi.org/10.3390/nano13050914
APA StyleTang, Y., Luo, Q., Chen, Y., & Xu, K. (2023). All-Silicon Photoelectric Biosensor on Chip Based on Silicon Nitride Waveguide with Low Loss. Nanomaterials, 13(5), 914. https://doi.org/10.3390/nano13050914