Temperature Evolution of Two-State Lasing in Microdisk Lasers with InAs/InGaAs Quantum Dots
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Spontaneous Emission of the Active Region
3.2. Two-State Lasing in Microdisk Lasers
3.3. Temperature Evolution of the Two-State Lasing: An Experimental Study
3.4. Temperature Evolution of Two-State Lasing: Numerical Modelling
3.5. Numerical Modelling Results for Two-State Lasing
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Osgood, R., Jr.; Meng, X. Principles of Photonic Integrated Circuits; Springer: Cham, Switzerland, 2021; p. 375. [Google Scholar]
- Elshaari, A.W.; Pernice, W.; Srinivasan, K.; Benson, O.; Zwiller, V. Hybrid integrated quantum photonic circuits. Nat. Photon. 2020, 14, 285–298. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Özdemir, S.K.; Yang, L. Whispering gallery microcavity lasers. Laser Photonics Rev. 2012, 7, 60–82. [Google Scholar] [CrossRef]
- Yang, S.; Wang, Y.; Sun, H. Advances and prospects for whispering gallery mode microcavities. Adv. Opt. Mater. 2015, 3, 1136–1162. [Google Scholar] [CrossRef]
- Wan, Y.; Norman, J.; Li, Q.; Kennedy, M.J.; Liang, D.; Zhang, C.; Huang, D.; Zhang, Z.; Liu, A.Y.; Torres, A.; et al. 1.3 μm submilliamp threshold quantum dot micro-lasers on Si. Optica 2017, 4, 940–944. [Google Scholar] [CrossRef] [Green Version]
- Moiseev, E.I.; Kryzhanovskaya, N.V.; Zubov, F.I.; Mikhailovskii, M.S.; Abramov, A.N.; Maximov, M.V.; Kulagina, M.M.; Guseva, Y.A.; Livshits, D.A.; Zhukov, A.E. Record low threshold current density in quantum dot microdisk laser. Semiconductors 2019, 53, 1888–1890. [Google Scholar] [CrossRef]
- Inoue, D.; Jung, D.; Norman, J.; Wan, Y.; Nishiyama, N.; Arai, S.; Gossard, A.C.; Bowers, J.E. Directly modulated 1.3 μm quantum dot lasers epitaxially grown on silicon. Opt. Express 2018, 26, 7022–7033. [Google Scholar] [CrossRef] [PubMed]
- Kryzhanovskaya, N.V.; Moiseev, E.I.; Zubov, F.I.; Mozharov, A.M.; Maximov, M.V.; Kalyuzhnyy, N.A.; Mintairov, S.A.; Kulagina, M.M.; Blokhin, S.A.; Kudryavtsev, K.E.; et al. Direct modulation characteristics of microdisk lasers with InGaAs/GaAs quantum well-dots. Photonics Res. 2019, 7, 664–668. [Google Scholar] [CrossRef]
- Pan, S.; Cao, V.; Liao, M.; Lu, Y.; Liu, Z.; Tang, M.; Chen, S.; Seeds, A.; Liu, H. Recent progress in epitaxial growth of III–V quantum-dot lasers on silicon substrate. J. Semicond. 2019, 40, 101302. [Google Scholar] [CrossRef]
- Tang, M.; Chen, S.; Wu, J.; Jiang, Q.; Dorogan, V.G.; Benamara, M.; Mazur, Y.I.; Salamo, G.J.; Seeds, A.; Liu, H. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers. Opt. Express 2014, 22, 11528–11535. [Google Scholar] [CrossRef]
- Wang, T.; Liu, H.; Lee, A.; Pozzi, F.; Seeds, A. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates. Opt. Express 2011, 19, 11381–11386. [Google Scholar] [CrossRef]
- Tanaka, S.; Jeong, S.-H.; Sekiguchi, S.; Kurahashi, T.; Tanaka, Y.; Morito, K. High-output-power, single-wavelength silicon hybrid laser using precise flip-chip bonding technology. Opt. Express 2012, 20, 28057–28069. [Google Scholar] [CrossRef] [PubMed]
- Zhukov, A.E.; Kryzhanovskaya, N.V.; Moiseev, E.I.; Dragunova, A.S.; Tang, M.; Chen, S.; Liu, H.; Kulagina, M.M.; Kadinskaya, S.A.; Zubov, F.I.; et al. InAs/GaAs quantum dot microlasers formed on silicon using monolithic and hybrid integration methods. Materials 2020, 13, 2315. [Google Scholar] [CrossRef] [PubMed]
- Zubov, F.; Maximov, M.; Moiseev, E.; Vorobyev, A.; Mozharov, A.; Berdnikov, Y.; Kalyuzhnyy, N.; Mintairov, S.; Kulagina, M.; Kryzhanovskaya, N.; et al. Improved performance of InGaAs/GaAs microdisk lasers epi-side down bonded onto a silicon board. Opt. Lett. 2021, 46, 3853–3856. [Google Scholar] [CrossRef] [PubMed]
- Bimberg, D.; Grundmann, M.; Ledentsov, N.N. Quantum Dot Heterostructures; John Wiley & Sons: Chichester, England, 1999; p. 339. [Google Scholar]
- Zhukov, A.E.; Kovsh, A.R.; Livshits, D.A.; Ustinov, V.M.; Alferov, Z.I. Output power and its limitation in ridge-waveguide 1.3 μm wavelength quantum-dot lasers. Semicond. Sci. Technol. 2003, 18, 774–781. [Google Scholar] [CrossRef]
- Markus, A.; Chen, J.X.; Paranthoën, C.; Fiore, A.; Platz, C.; Gauthier-Lafaye, O. Simultaneous two-state lasing in quantum-dot lasers. Appl. Phys. Lett. 2003, 82, 1818–1820. [Google Scholar] [CrossRef]
- Kovsh, A.; Krestnikov, I.; Livshits, D.; Mikhrin, S.; Weimert, J.; Zhukov, A. Quantum dot laser with 75-nm-broad spectrum of emission. Opt. Lett. 2007, 32, 793–795. [Google Scholar] [CrossRef]
- Djie, H.S.; Ooi, B.S.; Fang, X.-M.; Wu, Y.; Fastenau, J.M.; Liu, W.K.; Hopkinson, M. Room-temperature broadband emission of an InGaAs/GaAs quantum dots laser. Opt. Lett. 2007, 32, 44–46. [Google Scholar] [CrossRef]
- Fedorova, K.A.; Cataluna, M.A.; Krestnikov; Livshits, D.; Rafailov, E.U. Broadly tunable high-power InAs/GaAs quantum-dot external cavity lasers. Opt. Express 2010, 18, 19438–19443. [Google Scholar] [CrossRef] [Green Version]
- Maximov, M.V.; Shernyakov, Y.M.; Gordeev, N.Y.; Nadtochiy, A.M.; Zhukov, A.E. Information encoding using two-level generation in a quantum dot laser. Tech. Phys. Lett. 2023, in press. [Google Scholar]
- Kikuchi, N. Multilevel signaling technology for increasing transmission capacity in high-speed short-distance optical fiber communication. IEICE Trans. Electron. 2019, 102, 316–323. [Google Scholar] [CrossRef] [Green Version]
- Markus, A.; Rossetti, M.; Calligari, V.; Chek-Al-Kar, D.; Chen, J.X.; Fiore, A.; Scollo, R. Two-state switching and dynamics in quantum dot two-section lasers. J. Appl. Phys. 2006, 100, 113104. [Google Scholar] [CrossRef]
- Kelleher, B.; Dillane, M.; Viktorov, E.A. Optical information processing using dual state quantum dot lasers: Complexity through simplicity. Light Sci. Appl. 2021, 10, 238. [Google Scholar] [CrossRef] [PubMed]
- Tykalewicz, B.; Goulding, D.; Hegarty, S.P.; Huyet, G.; Byrne, D.; Phelan, R.; Kelleher, B. All-optical switching with a dual-state single-section quantum dot laser via optical injection. Optics Lett. 2014, 39, 4607–4610. [Google Scholar] [CrossRef] [PubMed]
- Makhov, I.S.; Beckman, A.A.; Kulagina, M.M.; Guseva, Y.A.; Kryzhanovskaya, N.V.; Nadtochiy, A.M.; Maximov, M.V.; Zhukov, A.E. Two-state lasing in injection microdisks with InAs/InGaAs quantum dots. Tech. Phys. Lett. 2022, 48, 68–71. [Google Scholar]
- Makhov, I.; Ivanov, K.; Moiseev, E.; Dragunova, A.; Fominykh, N.; Shernyakov, Y.; Maximov, M.; Kryzhanovskaya, N.; Zhukov, A. Two-state lasing in microdisk laser diodes with quantum dot active region. Photonics 2023, 10, 235. [Google Scholar] [CrossRef]
- Zhukov, A.E.; Kryzhanovskaya, N.V.; Moiseev, E.I.; Nadtochiy, A.M.; Dragunova, A.S.; Maximov, M.V.; Zubov, F.I.; Kadinskaya, S.A.; Berdnikov, Y.; Kulagina, M.M.; et al. Impact of self-heating and elevated temperature on performance of quantum dot microdisk lasers. IEEE J. Quantum Electron. 2020, 56, 2000908. [Google Scholar] [CrossRef]
- Maximov, M.V.; Ledentsov, N.N.; Ustinov, V.M.; Alferov, Z.I.; Bimberg, D. GaAs-based 1.3 μm InGaAs quantum dot lasers: A status report. J. Electron. Mater. 2000, 29, 476–486. [Google Scholar] [CrossRef]
- Talalaev, V.; Kryzhanovskaya, N.; Tomm, J.W.; Rutckaia, V.; Schilling, J.; Zhukov, A. Dynamics of broadband lasing cascade from a single dot-in-well InGaAs microdisk. Sci. Rep. 2019, 9, 5635. [Google Scholar] [CrossRef] [Green Version]
- Fafard, S.; Wasilewski, Z.R.; Allen, C.N.; Picard, D.; Spanner, M.; McCaffrey, J.P.; Piva, P.G. Manipulating the energy levels of semiconductor quantum dots. Phys. Rev. B 1999, 59, 15368–15373. [Google Scholar] [CrossRef] [Green Version]
- Mukai, K.; Ohtsuka, N.; Shoji, H.; Sugawara, M. Emission from discrete levels in self-formed InGaAs/GaAs quantum dots by electric carrier injection: Influence of phonon bottleneck. Appl. Phys. Lett. 1996, 68, 3013–3015. [Google Scholar] [CrossRef]
- Spitzer, W.G.; Whelan, J.M. Infrared absorption and electron effective mass in n-type gallium arsenide. Phys. Rev. 1959, 114, 59–63. [Google Scholar] [CrossRef]
- Ryvkin, B.S.; Georgievskii, A.M. Polarization selection in VCSELs due to current carrier heating. Semiconductors 1999, 33, 813–819. [Google Scholar] [CrossRef]
- Kryzhanovskaya, N.V.; Moiseev, E.I.; Kudashova, Y.V.; Zubov, F.I.; Lipovskii, A.A.; Kulagina, M.M.; Troshkov, S.I.; Zadiranov, Y.M.; Livshits, D.A.; Maximov, M.V.; et al. Continuous-wave lasing at 100 °C in 1.3 μm quantum dot microdisk diode laser. Electron. Lett. 2015, 51, 1354–1355. [Google Scholar] [CrossRef]
- McCaulley, J.A.; Donnelly, V.M.; Vernon, M.; Taha, I. Temperature dependence of the near-infrared refractive index of silicon, gallium arsenide, and indium phosphide. Phys. Rev. B 1994, 49, 7408–7417. [Google Scholar] [CrossRef] [PubMed]
- Markus, A.; Fiore, A. Modelling carrier dynamics in quantum-dot lasers. Phys. Stat. Sol. (a) 2004, 201, 338–344. [Google Scholar] [CrossRef]
- Wu, Y.; Suris, R.A.; Asryan, L.V. Effect of excited states on the ground-state modulation bandwidth in quantum dot lasers. Appl. Phys. Lett. 2013, 102, 191102. [Google Scholar] [CrossRef] [Green Version]
- Hasler, K.H.; Wenzel, H.; Crump, P.; Knigge, S.; Maasdorf, A.; Platz, R.; Staske, R.; Erbert, G. Comparative theoretical and experimental studies of two-designs of high-power diode lasers. Semicond. Sci. Technol. 2014, 29, 045010. [Google Scholar] [CrossRef]
- Korenev, V.V.; Savelyev, A.V.; Zhukov, A.E.; Omelchenko, A.V.; Maximov, M.V. Analytical approach to the multi-state lasing phenomenon in quantum dot lasers. Appl. Phys. Lett. 2013, 102, 112101. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makhov, I.; Ivanov, K.; Moiseev, E.; Fominykh, N.; Dragunova, A.; Kryzhanovskaya, N.; Zhukov, A. Temperature Evolution of Two-State Lasing in Microdisk Lasers with InAs/InGaAs Quantum Dots. Nanomaterials 2023, 13, 877. https://doi.org/10.3390/nano13050877
Makhov I, Ivanov K, Moiseev E, Fominykh N, Dragunova A, Kryzhanovskaya N, Zhukov A. Temperature Evolution of Two-State Lasing in Microdisk Lasers with InAs/InGaAs Quantum Dots. Nanomaterials. 2023; 13(5):877. https://doi.org/10.3390/nano13050877
Chicago/Turabian StyleMakhov, Ivan, Konstantin Ivanov, Eduard Moiseev, Nikita Fominykh, Anna Dragunova, Natalia Kryzhanovskaya, and Alexey Zhukov. 2023. "Temperature Evolution of Two-State Lasing in Microdisk Lasers with InAs/InGaAs Quantum Dots" Nanomaterials 13, no. 5: 877. https://doi.org/10.3390/nano13050877
APA StyleMakhov, I., Ivanov, K., Moiseev, E., Fominykh, N., Dragunova, A., Kryzhanovskaya, N., & Zhukov, A. (2023). Temperature Evolution of Two-State Lasing in Microdisk Lasers with InAs/InGaAs Quantum Dots. Nanomaterials, 13(5), 877. https://doi.org/10.3390/nano13050877