The Effect of the Pre-Strain Process on the Strain Engineering of Two-Dimensional Materials and Their van der Waals Heterostructures
Abstract
1. Introduction
2. Results and Discussion
3. Conclusions
4. Experimental
4.1. Material Fabrication
4.2. Strain Modulation
4.3. Measurement
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Akinwande, D.; Petrone, N.; Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 2014, 5, 5678. [Google Scholar] [CrossRef] [PubMed]
- Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008, 3, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Kulkarni, D.D.; Choi, I.; Tsukruk, V.V. Graphene-polymer nanocomposites for structural and functional applications. Prog. Polym. Sci. 2014, 39, 1934–1972. [Google Scholar] [CrossRef]
- Rogers, J.A.; Someya, T.; Huang, Y. Materials and Mechanics for Stretchable Electronics. Science 2010, 327, 1603–1607. [Google Scholar] [CrossRef]
- Schwierz, F. Graphene transistors. Nat. Nanotechnol. 2010, 5, 487–496. [Google Scholar] [CrossRef]
- Amorim, B.; Cortijo, A.; de Juan, F.; Grushin, A.; Guinea, F.; Gutiérrez-Rubio, A.; Ochoa, H.; Parente, V.; Roldán, R.; San-Jose, P.; et al. Novel effects of strains in graphene and other two dimensional materials. Phys. Rep. 2016, 617, 1–54. [Google Scholar] [CrossRef]
- Bertolazzi, S.; Brivio, J.; Kis, A. Stretching and Breaking of Ultrathin MoS2. ACS Nano 2011, 5, 9703–9709. [Google Scholar] [CrossRef]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef]
- Akinwande, D.; Brennan, C.J.; Bunch, J.S.; Egberts, P.; Felts, J.R.; Gao, H.; Huang, R.; Kim, J.-S.; Li, T.; Li, Y.; et al. A review on mechanics and mechanical properties of 2D materials—Graphene and beyond. Extreme Mech. Lett. 2017, 13, 42–77. [Google Scholar] [CrossRef]
- Butler, S.Z.; Hollen, S.M.; Cao, L.; Cui, Y.; Gupta, J.A.; Gutiérrez, H.R.; Heinz, T.F.; Hong, S.S.; Huang, J.; Ismach, A.F.; et al. Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene. ACS Nano 2013, 7, 2898–2926. [Google Scholar] [CrossRef]
- Gao, W.; Huang, R. Thermomechanics of monolayer graphene: Rippling, thermal expansion and elasticity. J. Mech. Phys. Solids 2014, 66, 42–58. [Google Scholar] [CrossRef]
- Chang, Y.-H.; Zhang, W.; Zhu, Y.; Han, Y.; Pu, J.; Chang, J.-K.; Hsu, W.-T.; Huang, J.-K.; Hsu, C.-L.; Chiu, M.-H.; et al. Monolayer MoSe2 Grown by Chemical Vapor Deposition for Fast Photodetection. ACS Nano 2014, 8, 8582–8590. [Google Scholar] [CrossRef]
- Huang, Y.L.; Chen, Y.; Zhang, W.; Quek, S.Y.; Chen, C.-H.; Li, L.-J.; Hsu, W.-T.; Chang, W.-H.; Zheng, Y.J.; Chen, W.; et al. Bandgap tunability at single-layer molybdenum disulphide grain boundaries. Nat. Commun. 2015, 6, 6298. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Fal’ko, V.I.; Colombo, L.; Gellert, P.R.; Schwab, M.G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200. [Google Scholar] [CrossRef]
- Zhang, W.; Chiu, M.-H.; Chen, C.-H.; Chen, W.; Li, L.-J.; Wee, A.T.S. Role of Metal Contacts in High-Performance Phototransistors Based on WSe2 Monolayers. ACS Nano 2014, 8, 8653–8661. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, J.-K.; Chen, C.-H.; Chang, Y.-H.; Cheng, Y.-J.; Li, L.-J. High-Gain Phototransistors Based on a CVD MoS2 Monolayer. Adv. Mater. 2013, 25, 3456–3461. [Google Scholar] [CrossRef]
- Lan, Y.; Xia, L.X.; Huang, T.; Xu, W.; Huang, G.F.; Hu, W.; Huang, W.Q. Strain and Electric Field Controllable Schottky Barriers and Contact Types in Graphene-MoTe2 van der Waals Heterostructure. Nanoscale Res. Lett. 2020, 15, 1–9. [Google Scholar] [CrossRef]
- Li, H.; Cui, Y.T.; Pi, M.; Li, D.M. The role of strain induced band modulation of WS2-GeC heterostructure for the hydrogen evolution. Phys. Scr. 2020, 95, 055801. [Google Scholar] [CrossRef]
- Zhang, R.; Hao, G.; Ye, X.; Gao, S.-P.; Li, H. Tunable electronic properties and Schottky barrier in a graphene/WSe2 heterostructure under out-of-plane strain and an electric field. Phys. Chem. Chem. Phys. 2020, 22, 23699–23706. [Google Scholar] [CrossRef]
- Zheng, J.; Li, E.; Cui, Z.; Ma, D.; Wang, X. Effects of doping and biaxial strain on the electronic properties of GaN/graphene/WS2 trilayer vdW heterostructure. J. Mater. Sci. 2020, 55, 11999–12007. [Google Scholar] [CrossRef]
- Yang, S.X.; Chen, Y.J.; Jiang, C.B. Strain engineering of two-dimensional materials: Methods, properties, and applications. Infomat 2021, 3, 397–420. [Google Scholar] [CrossRef]
- Pang, S.; Hernandez, Y.; Feng, X.; Müllen, K. Graphene as Transparent Electrode Material for Organic Electronics. Adv. Mater. 2011, 23, 2779–2795. [Google Scholar] [CrossRef] [PubMed]
- Conley, H.J.; Wang, B.; Ziegler, J.I.; Haglund, R.F., Jr.; Pantelides, S.T.; Bolotin, K.I. Bandgap Engineering of Strained Monolayer and Bilayer MoS2. Nano Lett. 2013, 13, 3626–3630. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Lan, Y.-W.; Stieg, A.Z.; Chen, J.-H.; Zhong, Y.-L.; Li, L.-J.; Chen, C.-D.; Zhang, Y.; Wang, K.L. Piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics. Nat. Commun. 2015, 6, 7430. [Google Scholar] [CrossRef] [PubMed]
- Niehues, I.; Schmidt, R.; Drüppel, M.; Marauhn, P.; Christiansen, D.; Selig, M.; Berghäuser, G.; Wigger, D.; Schneider, R.; Braasch, L.; et al. Strain Control of Exciton–Phonon Coupling in Atomically Thin Semiconductors. Nano Lett. 2018, 18, 1751–1757. [Google Scholar] [CrossRef]
- Deng, S.; Sumant, A.V.; Berry, V. Strain engineering in two-dimensional nanomaterials beyond graphene. Nano Today 2018, 22, 14–35. [Google Scholar] [CrossRef]
- Yun, W.S.; Han, S.W.; Hong, S.C.; Kim, I.G.; Lee, J.D. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te). Phys. Rev. B 2012, 85, 033305. [Google Scholar] [CrossRef]
- Liu, D.; Yan, X.-Q.; Guo, H.-W.; Liu, Z.-B.; Zhou, W.-Y.; Tian, J.-G. Substrate effect on the photoluminescence of chemical vapor deposition transferred monolayer WSe2. J. Appl. Phys. 2020, 128, 043101. [Google Scholar] [CrossRef]
- Ren, L.; Li, Z.; Lv, Y.; Li, X.; Zhang, D.; Li, W.; Liu, L.; Kong, L.; Duan, X.; Wang, X.; et al. Efficient modulation of MoS2/WSe2 interlayer excitons via uniaxial strain. Appl. Phys. Lett. 2022, 120, 053107. [Google Scholar] [CrossRef]
- Tongay, S.; Fan, W.; Kang, J.; Park, J.; Koldemir, U.; Suh, J.; Narang, D.S.; Liu, K.; Ji, J.; Li, J.; et al. Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers. Nano Lett. 2014, 14, 3185–3190. [Google Scholar] [CrossRef]
- Jadczak, J.; Kutrowska-Girzycka, J.; Kapuściński, P.; Huang, Y.S.; Wójs, A.; Bryja, Z. Probing of free and localized excitons and trions in atomically thin WSe2, WS2, MoSe2 and MoS2 in photoluminescence and reflectivity experiments. Nanotechnology 2017, 28, 395702. [Google Scholar] [CrossRef]
- Yang, B.; Molina, E.; Kim, J.; Barroso, D.; Lohmann, M.; Liu, Y.; Xu, Y.; Wu, R.; Bartels, L.; Watanabe, K.; et al. Effect of Distance on Photoluminescence Quenching and Proximity-Induced Spin–Orbit Coupling in Graphene/WSe2 Heterostructures. Nano Lett. 2018, 18, 3580–3585. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.; Yue, X.; Shan, Y.; Chen, J.; Ekoya, B.G.M.; Hu, L.; Liu, R.; Qiu, Z.; Cong, C. The Effect of the Pre-Strain Process on the Strain Engineering of Two-Dimensional Materials and Their van der Waals Heterostructures. Nanomaterials 2023, 13, 833. https://doi.org/10.3390/nano13050833
Han J, Yue X, Shan Y, Chen J, Ekoya BGM, Hu L, Liu R, Qiu Z, Cong C. The Effect of the Pre-Strain Process on the Strain Engineering of Two-Dimensional Materials and Their van der Waals Heterostructures. Nanomaterials. 2023; 13(5):833. https://doi.org/10.3390/nano13050833
Chicago/Turabian StyleHan, Jinkun, Xiaofei Yue, Yabing Shan, Jiajun Chen, Borgea G. M. Ekoya, Laigui Hu, Ran Liu, Zhijun Qiu, and Chunxiao Cong. 2023. "The Effect of the Pre-Strain Process on the Strain Engineering of Two-Dimensional Materials and Their van der Waals Heterostructures" Nanomaterials 13, no. 5: 833. https://doi.org/10.3390/nano13050833
APA StyleHan, J., Yue, X., Shan, Y., Chen, J., Ekoya, B. G. M., Hu, L., Liu, R., Qiu, Z., & Cong, C. (2023). The Effect of the Pre-Strain Process on the Strain Engineering of Two-Dimensional Materials and Their van der Waals Heterostructures. Nanomaterials, 13(5), 833. https://doi.org/10.3390/nano13050833