Photoluminescence Modulation of Ruddlesden-Popper Perovskite via Phase Distribution Regulation
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of the and
2.2. Characterizations
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, Y.; Gong, J.; Hao, M.; Zhang, Y.; Liu, M. Layered 2D Halide Perovskites beyond Ruddlesden-Popper Phase: Tailored Interlayer Chemistries for High-Performance Solar Cells. Angew. Chem. Int. Ed. 2021, 61, e202112022. [Google Scholar]
- Ye, Z.; Xia, J.; Zhang, D.; Duan, X.; Xing, Z.; Jin, G.; Cai, Y.; Xing, G.; Chen, J.; Ma, D. Efficient Quasi-2D Perovskite Light-Emitting Diodes Enabled by Regulating Phase Distribution with a Fluorinated Organic Cation. Nanomaterials 2022, 12, 3495. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Han, N.; Wang, W.; Ran, R.; Zhou, W.; Shao, Z. High-Quality Ruddlesden-Popper Perovskite Film Formation for High-Performance Perovskite Solar Cells. Adv. Mater. 2021, 33, 2002582. [Google Scholar] [CrossRef] [PubMed]
- Gowdru, S.M.; Lin, J.-C.; Wang, S.-T.; Chen, Y.-C.; Wu, K.-C.; Jiang, C.-N.; Chen, Y.-D.; Li, S.-S.; Chang, Y.J.; Wang, D.-Y. Accelerated Formation of 2D Ruddlesden—Popper Perovskite Thin Films by Lewis Bases for High Efficiency Solar Cell Applications. Nanomaterials 2022, 12, 1816. [Google Scholar] [CrossRef]
- Williams, O.F.; Guo, Z.; Hu, J.; Yan, L.; You, W.; Moran, A.M. Energy transfer mechanisms in layered 2D perovskites. J. Chem. Phys. 2018, 148, 134706. [Google Scholar] [CrossRef]
- Lei, L.; Seyitliyev, D.; Stuard, S.; Mendes, J.; Dong, Q.; Fu, X.; Chen, Y.-A.; He, S.; Yi, X.; Zhu, L.; et al. Efficient Energy Funneling in Quasi-2D Perovskites: From Light Emission to Lasing. Adv. Mater. 2020, 32, e1906571. [Google Scholar] [CrossRef]
- Ramos-Terron, S.; Jodlowski, A.D.; Verdugo-Escamilla, C.; Camacho, L.; de Miguel, G. Relaxing the Goldschmidt Tolerance Factor: Sizable Incorporation of the Guanidinium Cation into a Two-Dimensional Ruddlesden-Popper Perovskite. Chem. Mater. 2020, 32, 4024–4037. [Google Scholar] [CrossRef]
- Yan, J.; Croes, G.; Fakharuddin, A.; Song, W.; Heremans, P.; Chen, H.Z.; Qiu, W.M. Exploiting Two-Step Processed Mixed 2D/3D Perovskites for Bright Green Light Emitting Diodes. Adv. Opt. Mater. 2019, 7, 1900465. [Google Scholar] [CrossRef]
- Mao, L.; Stoumpos, C.C.; Kanatzidis, M.G. Two-Dimensional Hybrid Halide Perovskites: Principles and Promises. Two-Dimensional Hybrid Halide Perovskites: Principles and Promises. J. Am. Chem. Soc. 2019, 141, 1171–1190. [Google Scholar] [CrossRef]
- Blancon, J.-C.; Even, J.; Stoumpos, C.C.; Kanatzidis, M.G.; Mohite, A.D. Semiconductor physics of organic-inorganic 2D halide perovskites. Nat. Nanotechnol. 2020, 15, 969–985. [Google Scholar] [CrossRef]
- Qing, J.; Ramesh, S.; Xu, Q.; Liu, X.-K.; Wang, H.; Yuan, Z.; Chen, Z.; Hou, L.; Sum, T.C.; Gao, F. Spacer Cation Alloying in Ruddlesden-Popper Perovskites for Efficient Red Light-Emitting Diodes with Precisely Tunable Wavelengths. Adv. Mater. 2021, 33, e2104381. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Chu, Z.; Meng, J.; Yin, Z.; Zhang, X.; Deng, J.; You, J. Effects of Organic Cations on the Structure and Performance of Quasi-Two-Dimensional Perovskite-Based Light-Emitting Diodes. J. Phys. Chem. Lett. 2019, 10, 2892–2897. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhang, X.; Deng, J.; Chu, Z.; Jiang, Q.; Meng, J.; Wang, P.; Zhang, L.; Yin, Z.; You, J. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nat. Commun. 2018, 9, 570. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Spies, L.M.; Alonso-Alvarez, D.; Mocherla, P.; Jones, H.; Hanisch, J.; Bein, T.; Barnes, P.R.F.; Docampo, P. Identifying and controlling phase purity in 2D hybrid perovskite thin films. J. Mater. Chem. A 2018, 6, 22215–22225. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, F.; Sun, W.; Ni, R.; Hu, S.; Liu, J.; Zhang, B.; Alsaed, A.; Hayat, T.; Tan, Z.A. Manipulating the Trade-off Between Quantum Yield and Electrical Conductivity for High-Brightness Quasi-2D Perovskite Light-Emitting Diodes. Adv. Funct. Mater. 2018, 28, 1804187. [Google Scholar] [CrossRef]
- Pina, J.M.; Parmar, D.H.; Bappi, G.; Zhou, C.; Choubisa, H.; Vafaie, M.; Najarian, A.M.; Bertens, K.; Sagar, L.K.; Dong, Y.; et al. Deep-Blue Perovskite Single-Mode Lasing through Efficient Vapor-Assisted Chlorination. Adv. Mater. 2021, 33, e2006697. [Google Scholar] [CrossRef]
- Qin, C.; Matsushima, T.; Potscavage, W.J., Jr.; Sandanayaka, A.S.D.; Leyden, M.R.; Bencheikh, F.; Goushi, K.; Mathevet, F.; Heinrich, B.; Yumoto, G.; et al. Triplet management for efficient perovskite light-emitting diodes. Nat. Photon. 2020, 14, 70–75. [Google Scholar] [CrossRef]
- Shao, M.; Bie, T.; Yang, L.; Gao, Y.; Jin, X.; He, F.; Zheng, N.; Yu, Y.; Zhang, X. Over 21% Efficiency Stable 2D Perovskite Solar Cells. Adv. Mater. 2021, 34, e2107211. [Google Scholar] [CrossRef]
- Li, M.; Gao, Q.; Liu, P.; Liao, Q.; Zhang, H.; Yao, J.; Hu, W.; Wu, Y.; Fu, H. Amplified Spontaneous Emission Based on 2D Ruddlesden-Popper Perovskites. Adv. Funct. Mater. 2018, 28, 1707006. [Google Scholar] [CrossRef]
- Duan, Z.; Na, G.; Wang, S.; Ning, J.; Xing, B.; Huang, F.; Portniagin, A.S.; Kershaw, S.V.; Zhang, L.; Rogach, A.L. Proton Transfer-Driven Modification of 3D Hybrid Perovskites to Form Oriented 2D Ruddlesden-Popper Phases. Small Sci. 2022, 2, 2100114. [Google Scholar] [CrossRef]
- Cheng, Q.; Wang, B.; Huang, G.; Li, Y.; Li, X.; Chen, J.; Yue, S.; Li, K.; Zhang, H.; Zhang, Y.; et al. Impact of Strain Relaxation on 2D Ruddlesden-Popper Perovskite Solar Cells. Angew. Chem. Int. Ed. 2022, 61, e202208264. [Google Scholar] [CrossRef] [PubMed]
- Blancon, J.C.; Tsai, H.; Nie, W.; Stoumpos, C.C.; Pedesseau, L.; Katan, C.; Kepenekian, M.; Soe, C.M.M.; Appavoo, K.; Sfeir, M.Y.; et al. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science 2017, 355, 1288–1292. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, K.; Zhang, S.; Takahashi, S.; Ni, L.; Rao, A.; Yamashita, K. Excitation Dynamics in Layered Lead Halide Perovskite Crystal Slabs and Microcavities. ACS Photon. 2020, 7, 845–852. [Google Scholar] [CrossRef]
- Gan, Z.; Wen, X.; Zhou, C.; Chen, W.; Zheng, F.; Yang, S.; Davis, P.C.; Tapping, J.A.; Kee, T.W.; Zhang, H.; et al. Transient Energy Reservoir in 2D Perovskites. Adv. Opt. Mater. 2019, 7, 1900971. [Google Scholar] [CrossRef]
- Zhu, Y.; Cui, Q.; Chen, J.; Chen, F.; Shi, Z.; Zhao, X.; Xu, C. Inhomogeneous Trap-State-Mediated Ultrafast Photocarrier Dynamics in CsPbBr3 Microplates. ACS Appl. Mater. Interfaces 2021, 13, 6820–6829. [Google Scholar] [CrossRef]
- Zheng, T.; Niu, X.; Zhao, H.; Wang, J.; Zhao, W.; Lu, J.; Ni, Z. Photoluminescence enhancement at a high generation rate induced by exciton localization. Opt. Lett. 2021, 46, 2774–2777. [Google Scholar] [CrossRef]
- Zhang, J.; Langner, S.; Wu, J.; Kupfer, C.; Lüer, L.; Meng, W.; Zhao, B.; Liu, C.; Daum, M.; Osvet, A.; et al. Intercalating-Organic-Cation-Induced Stability Bowing in Quasi-2D Metal-Halide Perovskites. ACS Energy Lett. 2022, 7, 70–77. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Zheng, T.; Zhao, W.; Yu, Y.; Wang, W.; Ni, Z. Photoluminescence Modulation of Ruddlesden-Popper Perovskite via Phase Distribution Regulation. Nanomaterials 2023, 13, 571. https://doi.org/10.3390/nano13030571
Zhao X, Zheng T, Zhao W, Yu Y, Wang W, Ni Z. Photoluminescence Modulation of Ruddlesden-Popper Perovskite via Phase Distribution Regulation. Nanomaterials. 2023; 13(3):571. https://doi.org/10.3390/nano13030571
Chicago/Turabian StyleZhao, Xinwei, Ting Zheng, Weiwei Zhao, Yuanfang Yu, Wenhui Wang, and Zhenhua Ni. 2023. "Photoluminescence Modulation of Ruddlesden-Popper Perovskite via Phase Distribution Regulation" Nanomaterials 13, no. 3: 571. https://doi.org/10.3390/nano13030571
APA StyleZhao, X., Zheng, T., Zhao, W., Yu, Y., Wang, W., & Ni, Z. (2023). Photoluminescence Modulation of Ruddlesden-Popper Perovskite via Phase Distribution Regulation. Nanomaterials, 13(3), 571. https://doi.org/10.3390/nano13030571