Demonstration of a Learning-Empowered Fiber Specklegram Sensor Based on Focused Ion Beam Milling for Refractive Index Sensing
Abstract
1. Introduction
2. Methods
2.1. Design Principle
2.2. Experimental Setup and Data Acquisition
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Martan, T.; Mares, D.; Prajzler, V. Local detection of gaseous carbon dioxide using optical fibers and fiber tapers of single-cell dimensions. Sens. Actuators B 2023, 375, 132887. [Google Scholar] [CrossRef]
- Reyes-Gonzalez, L.; Rodriguez-Cobo, L.; Lopez-Higuera, J.-M. Comparison of Ballistocardiogram Processing Methods Based on Fiber Specklegram Sensors. IEEE Sens. J. 2022, 22, 20524–20530. [Google Scholar] [CrossRef]
- Sepehri, A.; Helisaz, H.; Chiao, M. A fiber Bragg grating tactile sensor for soft material characterization based on quasi linear viscoelastic analysis. Sens. Actuators A 2023, 349, 114079. [Google Scholar] [CrossRef]
- Soares, L.M.B.; Lopez Vargas, J.D.; da Silva, B.; Allil, R.C.; Dante, A.; Werneck, M.M. Optical Magnetostrictive Current Sensor Based on In-Fiber Fabry–Pérot Cavity. IEEE Sens. J. 2022, 22, 20499–20507. [Google Scholar] [CrossRef]
- Vasconcelos, H.; de Almeida, J.M.; Mendes, J.; Dias, B.; Jorge, P.A.S.; Saraiva, C.; Coelho, L.C.C. Optical Biosensor for the Detection of Biogenic Amines. IEEE Sens. J. 2022, 22, 20484–20491. [Google Scholar] [CrossRef]
- Yuan, W.; Wang, F.; Savenko, A.; Petersen, D.H.; Bang, O. Note: Optical fiber milled by focused ion beam and its application for Fabry-Perot refractive index sensor. Rev. Sci. Instrum. 2011, 82, 076103. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.R.; Hu, T.Y.; Wang, D.N. Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing. Opt. Express 2012, 20, 22813–22818. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Yang, L.; Xu, C.Q.; Xu, C.; Huang, W.; Li, Y. Long-period grating refractive index sensor with a modified cladding structure for large operational range and high sensitivity. Appl. Opt. 2006, 45, 6142–6147. [Google Scholar] [CrossRef] [PubMed]
- Rindorf, L.; Bang, O. Highly sensitive refractometer with a photoniccrystal-fiber long-period grating. Opt. Lett. 2008, 33, 563–565. [Google Scholar] [CrossRef]
- Iadicicco, A.; Cusano, A.; Cutolo, A.; Bernini, R.; Giordano, M. Thinned Fiber Bragg Gratings as High Sensitivity Refractive Index Sensor. IEEE Photonics Technol. Lett. 2004, 16, 1149–1151. [Google Scholar] [CrossRef]
- Liang, W.; Huang, Y.; Xu, Y.; Lee, R.K.; Yariv, A. Highly sensitive fiber Bragg grating refractive index sensors. Appl. Phys. Lett. 2005, 86, 151122. [Google Scholar] [CrossRef]
- Wu, D.K.C.; Kuhlmey, B.T.; Eggleton, B.J. Ultrasensitive photonic crystal fiber refractive index sensor. Opt. Lett. 2009, 34, 322–324. [Google Scholar] [CrossRef]
- Gouveia, C.; Zibaii, M.; Latifi, H.; Marques, M.J.B.; Baptista, J.M.; Jorge, P.A.S. High resolution temperature independent refractive index measurement using differential white light interferometry. Sens. Actuators B 2013, 188, 1212–1217. [Google Scholar] [CrossRef]
- Fujiwara, E.; da Silva, L.E.; Cabral, T.D.; de Freitas, H.E.; Wu, Y.T.; de Barros Cordeiro, C.M. Optical Fiber Specklegram Chemical Sensor Based on a Concatenated Multimode Fiber Structure. J. Light. Technol. 2019, 37, 5041–5047. [Google Scholar] [CrossRef]
- Gómez, J.A.; Lorduy, G.H.; Salazar, Á. Improvement of the dynamic range of a fiber specklegram sensor based on volume speckle recording in photorefractive materials. Opt. Laser Eng. 2011, 49, 473–480. [Google Scholar] [CrossRef]
- Gómez, J.A.; Salazar, Á. Self-correlation fiber specklegram sensor using volume characteristics of speckle patterns. Opt. Laser Eng. 2012, 50, 812–815. [Google Scholar] [CrossRef]
- Rodriguez-Cuevas, A.; Pena, E.R.; Rodriguez-Cobo, L.; Lomer, M.; Higuera, J.M. Low-cost fiber specklegram sensor for noncontact continuous patient monitoring. J. Biomed. Opt. 2017, 22, 37001. [Google Scholar] [CrossRef]
- Spillman, W.B., Jr.; Kline, B.R.; Maurice, L.B.; Fuhr, P.L. Statistical-mode sensor for fiber optic vibration sensing uses. Appl. Opt. 1989, 28, 3166–3176. [Google Scholar] [CrossRef]
- Etchepareborda, P.; Federico, A.; Kaufmann, G.H. Sensitivity evaluation of dynamic speckle activity measurements using clustering methods. Appl. Opt. 2010, 49, 3753–3761. [Google Scholar] [CrossRef] [PubMed]
- Feng, F.; Chen, W.; Chen, D.; Lin, W.; Chen, S.-C. In-situ ultrasensitive label-free DNA hybridization detection using optical fiber specklegram. Sens. Actuators B 2018, 272, 160–165. [Google Scholar] [CrossRef]
- Fujiwara, E.; Wu, Y.T.; Santos, M.F.M.; Schenkel, E.A.; Suzuki, C.K. Optical Fiber Specklegram Sensor for Measurement of Force Myography Signals. IEEE Sens. J. 2017, 17, 951–958. [Google Scholar] [CrossRef]
- Li, G.; Liu, Y.; Qin, Q.; Zou, X.; Wang, M.; Yan, F. Deep learning based optical curvature sensor through specklegram detection of multimode fiber. Opt. Laser Technol. 2022, 149, 107873. [Google Scholar] [CrossRef]
- Li, H.; Liang, H.; Hu, Q.; Wang, M.; Wang, Z. Deep learning for position fixing in the micron scale by using convolutional neural networks. Chin. Opt. Lett. 2020, 18, 050602. [Google Scholar] [CrossRef]
- Liang, Q.; Tao, J.; Wang, X.; Wang, T.; Gao, X.; Zhou, P.; Xu, B.; Zhao, C.; Kang, J.; Wang, L.; et al. Demodulation of Fabry-Perot sensors using random speckles. Opt. Lett. 2022, 47, 4806–4809. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, G.; Qin, Q.; Tan, Z.; Wang, M.; Yan, F. Bending recognition based on the analysis of fiber specklegrams using deep learning. Opt. Laser Technol. 2020, 131, 106424. [Google Scholar] [CrossRef]
- Razmyar, S.; Mostafavi, M.T. Deep Learning for Estimating Deflection Direction of a Multimode Fiber From Specklegram. J. Light. Technol. 2021, 39, 1850–1857. [Google Scholar] [CrossRef]
- Sundaram, V.M.; Wen, S.-B. Fabrication of micro-optical devices at the end of a multimode optical fiber with negative tone lift-off EBL. J. Micromech. Microeng. 2012, 22, 125016. [Google Scholar] [CrossRef]
- Baga, S.K.; Wanb, M.; Sinhac, R.K.; Varshneyc, S.K. Design and characterization of surface relief grating on etched multimode optical fiber for refractive index sensing. Sens. Actuators A 2020, 303, 111836. [Google Scholar] [CrossRef]
- Kou, J.L.; Qiu, S.J.; Xu, F.; Lu, Y.Q. Demonstration of a compact temperature sensor based on first-order Bragg grating in a tapered fiber probe. Opt. Express 2011, 19, 18452–18457. [Google Scholar] [CrossRef]
- Tsutsumi, N.; Hirota, J.; Kinashi, K.; Sakai, W. Direct laser writing for micro-optical devices using a negative photoresist. Opt. Express 2017, 25, 31539–31551. [Google Scholar] [CrossRef]
- Kou, J.L.; Qiu, S.J.; Xu, F.; Lu, Y.Q.; Yuan, Y.; Zhao, G. Miniaturized Metal-Dielectric-Hybrid Fiber Tip Grating for Refractive Index Sensing. IEEE Photonics Technol. Lett. 2011, 23, 1712–1714. [Google Scholar] [CrossRef]
- Yu, F.T.; Wen, M.; Yin, S.; Uang, C.M. Submicrometer displacement sensing using inner-product multimode fiber speckle fields. Appl. Opt. 1993, 32, 4685–4689. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Yang, C.; Chen, J.; Li, Z.; Huang, Y. Structural Crack Detection and Recognition Based on Deep Learning. Appl. Sci. 2021, 11, 2868. [Google Scholar] [CrossRef]
- Bagley, N.; Kremp, T.; Lamb, E.S.; Westbrook, P.S. Transfer learning and generalization of a neural-network-based multimode fiber position and imaging sensor under thermal perturbations. Opt. Fiber Technol. 2022, 70, 102855. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, L.; Gao, H.; Hu, H. Demonstration of a Learning-Empowered Fiber Specklegram Sensor Based on Focused Ion Beam Milling for Refractive Index Sensing. Nanomaterials 2023, 13, 768. https://doi.org/10.3390/nano13040768
Gu L, Gao H, Hu H. Demonstration of a Learning-Empowered Fiber Specklegram Sensor Based on Focused Ion Beam Milling for Refractive Index Sensing. Nanomaterials. 2023; 13(4):768. https://doi.org/10.3390/nano13040768
Chicago/Turabian StyleGu, Liangliang, Han Gao, and Haifeng Hu. 2023. "Demonstration of a Learning-Empowered Fiber Specklegram Sensor Based on Focused Ion Beam Milling for Refractive Index Sensing" Nanomaterials 13, no. 4: 768. https://doi.org/10.3390/nano13040768
APA StyleGu, L., Gao, H., & Hu, H. (2023). Demonstration of a Learning-Empowered Fiber Specklegram Sensor Based on Focused Ion Beam Milling for Refractive Index Sensing. Nanomaterials, 13(4), 768. https://doi.org/10.3390/nano13040768