Artificial HfO2/TiOx Synapses with Controllable Memory Window and High Uniformity for Brain-Inspired Computing
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yao, P.; Wu, H.Q.; Gao, B.; Tang, J.S.; Zhang, Q.T.; Zhang, W.Q.; Yang, J.J.; Qian, H. Fully hardware-implemented memristor convolutional neural network. Nature 2020, 577, 641–646. [Google Scholar] [CrossRef]
- Tong, L.; Peng, Z.R.; Lin, R.F.; Li, Z.; Wang, Y.L.; Huang, X.Y.; Xue, K.H.; Xu, H.Y.; Liu, F.; Xia, H.; et al. 2D materials-based homogeneous transistor-memory architecture for neuromorphic hardware. Science 2021, 373, 1353–1358. [Google Scholar] [CrossRef]
- Li, L.H.; Xue, K.H.; Zou, L.Q.; Yuan, J.H.; Sun, H.J.; Miao, X.S. Multilevel switching in Mg-doped HfOx memristor through the mutual-ion effect. Appl. Phys. Lett. 2021, 119, 7. [Google Scholar] [CrossRef]
- Rehman, M.M.; Mutee ur Rehman, H.M.; Kim, W.Y.; Hassan Sherazi, S.S.; Rao, M.W.; Khan, M.; Muhammad, Z. Biomaterial-based nonvolatile resistive memory devices toward ecofriendliness and biocompatibility. ACS Appl. Electron. Mater. 2021, 3, 2832–2861. [Google Scholar] [CrossRef]
- Prezioso, M.; Merrikh-Bayat, F.; Hoskins, B.D.; Adam, G.C.; Likharev, K.K.; Strukov, D.B. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 2015, 521, 61–64. [Google Scholar] [CrossRef]
- Li, C.; Hu, M.; Li, Y.N.; Jiang, H.; Ge, N.; Montgomery, E.; Zhang, J.M.; Song, W.H.; Davila, N.; Graves, C.E.; et al. Analogue signal and image processing with large memristor crossbars. Nat. Electron. 2014, 1, 52–59. [Google Scholar] [CrossRef]
- Yao, P.; Wu, H.; Gao, B.; Eryilmaz, S.B.; Huang, X.; Zhang, W.; Zhang, Q.; Deng, N.; Shi, L.; Wong, H.-S.P. Face classification using electronic synapses. Nat. Commun. 2016, 8, 15199. [Google Scholar] [CrossRef]
- Zhuang, P.P.; Ma, W.Z.; Liu, J.; Cai, W.W.; Lin, W.Y. Progressive RESET induced by Joule heating in hBN RRAMs. Appl. Phys. Lett. 2021, 118, 6. [Google Scholar] [CrossRef]
- Dawson, J.A.; Robertson, J. Nature of Cu Interstitials in Al2O3 and the Implications for Filament Formation in Conductive Bridge Random Access Memory Devices. J. Phys. Chem. C 2016, 120, 14474–14483. [Google Scholar] [CrossRef]
- Ismail, M.; Chand, U.; Mahata, C.; Nebhen, J.; Kim, S. Demonstration of synaptic and resistive switching characteristics in W/TiO2/HfO2/TaN memristor crossbar array for bioinspired neuromorphic computing. J. Mater. Sci. Technol. 2022, 96, 94–102. [Google Scholar] [CrossRef]
- Ye, C.; Deng, T.; Zhang, J.; Shen, L.; He, P.; Wei, W.; Wang, H. Enhanced resistive switching performance for bilayer HfO2/TiO2 resistive random access memory. Semicond. Sci. Technol. 2016, 31, 105005. [Google Scholar] [CrossRef]
- Liu, J.; Yang, H.F.; Ji, Y.; Ma, Z.Y.; Chen, K.J.; Zhang, X.X.; Zhang, H.; Sun, Y.; Huang, X.F.; Oda, S. An electronic synaptic device based on HfO2/TiOx bilayer structure memristor with self-compliance and deep-RESET characteristics. Nanotechnology 2018, 29, 10. [Google Scholar] [CrossRef]
- Kim, Y.G.; Lv, D.X.; Huang, J.S.; Bukke, R.N.; Chen, H.P.; Jang, J. Artificial Indium-Tin-Oxide Synaptic Transistor by Inkjet Printing Using Solution-Processed ZrO(x)Gate Dielectric. Phys. Status Solidi A-Appl. Mat. 2020, 217, 8. [Google Scholar] [CrossRef]
- Abbas, Y.; Han, I.S.; Sokolov, A.S.; Jeon, Y.R.; Choi, C. Rapid thermal annealing on the atomic layer-deposited zirconia thin film to enhance resistive switching characteristics. J. Mater. Sci.-Mater. Electron. 2019, 31, 903–909. [Google Scholar] [CrossRef]
- Lubben, M.; Karakolis, P.; Ioannou-Sougleridis, V.; Normand, P.; Dimitrakis, P.; Valov, I. Graphene-Modified Interface Controls Transition from VCM to ECM Switching Modes in Ta/TaOx Based Memristive Devices. Adv. Mater. 2015, 27, 6202–6207. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.J.; Zhang, M.X.; Strachan, J.P.; Miao, F.; Pickett, M.D.; Kelley, R.D.; Medeiros-Ribeiro, G.; Williams, R.S. High switching endurance in TaOx memristive devices. Appl. Phys. Lett. 2010, 97, 3. [Google Scholar] [CrossRef]
- Zhang, R.L.; Huang, H.; Xia, Q.; Ye, C.; Wei, X.D.; Wang, J.Z.; Zhang, L.; Zhu, L.Q. Role of Oxygen Vacancies at the TiO2/HfO2 Interface in Flexible Oxide-Based Resistive Switching Memory. Adv. Electron. Mater. 2019, 5, 7. [Google Scholar] [CrossRef]
- Batko, I.; Batkova, M. Memristive behavior of Nb/NbOx/Nb structures prepared by local anodic oxidation. Mater. Today Proc. 2016, 3, 803–809. [Google Scholar] [CrossRef]
- Chang, Y.F.; Fowler, B.; Zhou, F.; Chen, Y.C.; Lee, J.C. Study of self-compliance behaviors and internal filament characteristics in intrinsic SiOx-based resistive switching memory. Appl. Phys. Lett. 2016, 108, 5. [Google Scholar] [CrossRef]
- Jaafar, A.H.; Al Chawa, M.M.; Cheng, F.; Kelly, S.M.; Picos, R.; Tetzlaff, R.; Kemp, N.T. Polymer/TiO2 Nanorod Nanocomposite Optical Memristor Device. J. Phys. Chem. C 2021, 125, 14965–14973. [Google Scholar] [CrossRef]
- El Mesoudy, A.; Lamri, G.; Dawant, R.; AriasZapata, J.; Gliech, P.; Beilliard, Y.; Ecoffey, S.; Ruediger, A.; Alibart, F.; Drouin, D. Fully CMOS-compatible passive TiO2-based memristor crossbars for in-memory computing. Microelectron. Eng. 2022, 255, 111706. [Google Scholar] [CrossRef]
- Khan, M.; Mutee Ur Rehman, H.M.; Tehreem, R.; Saqib, M.; Rehman, M.M.; Kim, W.Y. All-Printed Flexible Memristor with Metal-Non-Metal-Doped TiO2 Nanoparticle Thin Films. Nanomaterials 2022, 12, 2289. [Google Scholar] [CrossRef] [PubMed]
- Covi, E.; Brivio, S.; Serb, A.; Prodromakis, T.; Fanciulli, M.; Spiga, S. IEEE HfO2-based Memristors for Neuromorphic Applications based memristors for neuromorphic applications. In Proceedings of the 2016 IEEE International Symposium on Circuits and Systems (ISCAS), Montréal, QC, Canada, 22–25 May 2016. [Google Scholar]
- Covi, E.; Brivio, S.; Fanciulli, M.; Spiga, S. Synaptic potentiation and depression in Al:HfO2-based memristor. Microelectron. Eng. 2015, 147, 41–44. [Google Scholar] [CrossRef]
- Yu, S.M.; Li, Z.W.; Chen, P.Y.; Wu, H.Q.; Gao, B.; Wang, D.L.; Wu, W.; Qian, H. IEEE Binary Neural Network with 16 Mb RRAM Macro Chip for Classification and Online Training. In Proceedings of the 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2016; IEEE: New York, NY, USA, 2016. [Google Scholar]
- Deng, T.F.; Ye, C.; Wu, J.J.; He, P.; Wang, H. Improved performance of ITO/TiO2/HfO2/Pt random resistive accessory memory by nitrogen annealing treatment. Microelectron. Reliab. 2016, 57, 34–38. [Google Scholar] [CrossRef]
- Sanjines, R.; Tang, H.; Berger, H.; Gozzo, F.; Margaritondo, G.; Levy, F. Electronicstructure of anatase TiO2 oxide. J. Appl. Phys. 1994, 75, 2945–2951. [Google Scholar] [CrossRef]
- Bharti, B.; Kumar, S.; Lee, H.N.; Kumar, R. Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment. Sci. Rep. 2016, 6, 32355. [Google Scholar] [CrossRef]
- Woo, J.; Padovani, A.; Moon, K.; Kwak, M.; Larcher, L.; Hwang, H. Linking Conductive Filament Properties and Evolution to Synaptic Behavior of RRAM Devices for Neuromorphic Applications. IEEE Electron. Dev. Lett. 2017, 38, 1220–1223. [Google Scholar] [CrossRef]
- Su, C.Y.; Liu, L.; Zhang, M.Y.; Zhang, Y.; Shao, C.L. Fabrication of Ag/TiO2 nanoheterostructures with visible light photocatalytic function via a solvothermal approach. Crystengcomm 2012, 14, 3989–3999. [Google Scholar] [CrossRef]
- Huang, C.Y.; Huang, C.Y.; Tsai, T.L.; Lin, C.A.; Tseng, T.Y. Switching mechanism of double forming process phenomenon in ZrOx/HfOy bilayer resistive switching memory structure with large endurance. Appl. Phys. 2014, 104, 4. [Google Scholar] [CrossRef]
- Tsai, T.L.; Chang, H.Y.; Lou, J.J.C.; Tseng, T.Y. A high performance transparent resistive switching memory made from ZrO2/AlON bilayer structure. Appl. Phys. Lett. 2016, 108, 4. [Google Scholar] [CrossRef]
- Zuo, F.; Panda, P.; Kotiuga, M.; Li, J.R.; Kang, M.G.; Mazzoli, C.; Zhou, H.; Barbour, A.; Wilkins, S.; Narayanan, B.; et al. Habituation based synaptic plasticity and organismic learning in a quantum perovskite. Nat. Commun. 2017, 8, 7. [Google Scholar] [CrossRef] [PubMed]
- Efros, A.L.; Delehanty, J.B.; Huston, A.L.; Medintz, I.L.; Barbic, M.; Harris, T.D. Evaluating the potential of using quantum dots for monitoring electrical signals in neurons. Nat. Nanotechnol. 2018, 13, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Ryu, J.H.; Kim, S. Artificial synaptic characteristics of TiO2/HfO2 memristor with self-rectifying switching for brain-inspired computing. Chaos Solitons Fractals 2020, 140, 1220–1223. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Zhu, X.; Ma, Z.; Hu, H.; Chen, T.; Li, W.; Xu, J.; Xu, L.; Chen, K. Artificial HfO2/TiOx Synapses with Controllable Memory Window and High Uniformity for Brain-Inspired Computing. Nanomaterials 2023, 13, 605. https://doi.org/10.3390/nano13030605
Yang Y, Zhu X, Ma Z, Hu H, Chen T, Li W, Xu J, Xu L, Chen K. Artificial HfO2/TiOx Synapses with Controllable Memory Window and High Uniformity for Brain-Inspired Computing. Nanomaterials. 2023; 13(3):605. https://doi.org/10.3390/nano13030605
Chicago/Turabian StyleYang, Yang, Xu Zhu, Zhongyuan Ma, Hongsheng Hu, Tong Chen, Wei Li, Jun Xu, Ling Xu, and Kunji Chen. 2023. "Artificial HfO2/TiOx Synapses with Controllable Memory Window and High Uniformity for Brain-Inspired Computing" Nanomaterials 13, no. 3: 605. https://doi.org/10.3390/nano13030605