High-Energy Excimer Annealing of Nanodiamond Layers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Analytical Methods
3. Results
3.1. Surface Morphology Using SEM and AFM Methods
3.2. Surface Chemistry Measured Using EDS and XPS Methods
3.3. Raman Spectroscopy
3.4. XRD Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hu, H.J.; Zhang, C.; Guo, J.; Ding, X.Y.; Wang, Q.; Zhang, Y.W.; Yu, Z.G. Carbon allotropes consisting of rings and cubes. Diam. Relat. Mater. 2022, 121, 108765. [Google Scholar] [CrossRef]
- Satoh, M.; Takayanagi, I. Pharmacological Studies on Fullerene (C60), a Novel Carbon Allotrope, and Its Derivatives. J. Pharmacol. Sci. 2006, 100, 513–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eatemadi, A.; Daraee, H.; Karimkhanloo, H.; Kouhi, M.; Zarghami, N.; Akbarzadeh, A.; Abasi, M.; Hanifehpour, Y.; Woo Joo, S. Carbon nanotubes: Properties, synthesis, purification, and medical applications. Nanoscale Res. Lett. 2014, 9, 393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.A.; Hayashi, T.; Endo, M.; Dresselhaus, M.S. Carbon Nanofibers. In Springer Handbook of Nanomaterials; Springer: Berlin/Heidelberg, Germany, 2013; Chapter 7; pp. 233–262. [Google Scholar] [CrossRef]
- Xin, L.; Jiaguo, Y.; Wageh, S.; Al-Ghamdi, A.A.; Xie, J. Graphene in Photocatalysis: A Review. Small 2016, 12, 6640–6696. [Google Scholar] [CrossRef]
- Zhang, R.S.; Jiang, J.W. The art of designing carbon allotropes. Front. Phys. 2019, 14, 13401. [Google Scholar] [CrossRef]
- Slepičková Kasálková, N.; Slepička, P.; Švorčík, V. Carbon Nanostructures, Nanolayers, and Their Composites. Nanomaterials 2021, 11, 2368. [Google Scholar] [CrossRef]
- Kaur, H.; Garg, R.; Singh, S.; Jana, A.; Bathula, C.; Kim, H.S.; Kumbar, S.G.; Mittal, M. Progress and challenges of graphene and its congeners for biomedical applications. J. Mol. Liq. 2022, 368, 120703. [Google Scholar] [CrossRef]
- Yoshinaka, H.; Inubushi, S.; Wakita, T.; Yokoya, T.; Muraoka, Y. Formation of Q-carbon by adjusting sp3 content in diamond-like carbon films and laser energy density of pulsed laser annealing. Carbon 2020, 167, 504–511. [Google Scholar] [CrossRef]
- Sachan, R.; Bhaumik, A.; Pant, P.; Pratera, J.; Narayan, J. Diamond film growth by HFCVD on Q-carbon seeded substrate. Carbon 2019, 141, 182–189. [Google Scholar] [CrossRef]
- Haque, A.; Narayan, J. Electron field emission from Q-carbon. Diam. Relat. Mater. 2018, 86, 71–78. [Google Scholar] [CrossRef]
- Narayan, J.; Joshi, P.; Smith, J.; Gao, W.; Weber, W.J.; Narayan, R.J. Q-carbon as a new radiation-resistant material. Carbon 2022, 186, 253–261. [Google Scholar] [CrossRef]
- Slepičková Kasálková, M.; Hurtuková, K.; Fajstavr, D.; Lapčák, L.; Sajdl, P.; Kolská, Z.; Švorčík, V.; Slepička, P. Carbon Transformation Induced by High Energy Excimer Treatment. Materials 2022, 15, 4614. [Google Scholar] [CrossRef]
- Narayan, J.; Bhaumik, A. Novel phase of carbon, ferromagnetism, and conversion into diamond. J. Appl. Phys. 2015, 188, 215303. [Google Scholar] [CrossRef] [Green Version]
- Kern, F.; Bernstein, A.; Killinger, A. Design of ceramic materials for orthopedic devices. In Advances in Ceramic Biomaterials; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; Chapter 10; pp. 331–353. [Google Scholar] [CrossRef]
- Sun, L.; Yuan, G.; Gao, L.; Yang, J.; Chhowalla, M.; Gharahcheshmeh, M.H.; Gleason, K.K.; Choi, Y.S.; Hong, B.H.; Liu, Z. Chemical vapour deposition. Nat. Rev. Methods Prim. 2021, 1, 5. [Google Scholar] [CrossRef]
- Prasanna, S.R.V.S.; Balaji, K.; Pandey, S.; Rana, S. Metal Oxide Based Nanomaterials and Their Polymer Nanocomposites. In Nanomaterials and Polymer Nanocomposites; Elsevier: Amsterdam, The Netherlands, 2019; Chapter 4; pp. 123–144. [Google Scholar] [CrossRef]
- Bleu, Y.; Bourquard, F.; Tite, T.; Loir, A.S.; Maddi, C.; Donnet, C.; Garrelie, F. Review of Graphene Growth from a Solid Carbon Source by Pulsed Laser Deposition (PLD). Front. Chem. 2018, 6, 572. [Google Scholar] [CrossRef] [Green Version]
- Nur, O.; Willander, M. Conventional nanofabrication methods. In Low Temperature Chemical Nanofabrication; William Andrew: Norwich, NY, USA, 2020; Chapter 4; pp. 49–86. [Google Scholar] [CrossRef]
- Cutroneo, M.; Havranek, V.; Flaks, J.; Malinsky, P.; Torrisi, L.; Silipigni, L.; Slepička, P.; Fajstavr, D.; Mackova, A. Pulsed Laser Deposition and Laser-Induced Backward Transfer to Modify Polydimethylsiloxane. Coatings 2021, 11, 1521. [Google Scholar] [CrossRef]
- Sachan, R.; Gupta, S.; Narayan, J. Nonequilibrium Structural Evolution of Q-Carbon and Interfaces. ACS Appl. Mater. Interfaces 2020, 12, 1330–1338. [Google Scholar] [CrossRef]
- Pandey, K.; Dwivedi, M.M.; Sanjay, S.S. A brief review on synthesis and application of polymer–nanodiamond compositeInterfaces. Mater. Today Proc. 2022, 68, 2772–2780. [Google Scholar] [CrossRef]
- Chauhan, S.; Jain, N.; Nagaich, U. Nanodiamonds with powerful ability for drug delivery and biomedical applications: Recent updates on in vivo study and patents. J. Pharm. Anal. 2020, 10, 1–12. [Google Scholar] [CrossRef]
- Qin, J.X.; Yang, X.G.; Lv, C.F.; Li, Y.Z.; Liu, K.K.; Zang, J.H.; Yang, X.; Dong, L.; Shan, C.X. Nanodiamonds: Synthesis, properties, and applications in nanomedicine. Mater. Des. 2021, 210, 110091. [Google Scholar] [CrossRef]
- Haque, A.; Pant, P.; Narayan, J. Large-area diamond thin film on Q-carbon coated crystalline sapphire by HFCVD. J. Cryst. Growth 2018, 504, 17–25. [Google Scholar] [CrossRef]
- Chen, Y.C.; Chang, L. Chemical vapor deposition of diamond on an adamantane-coated sapphire substrate. RSC Adv. 2014, 4, 18945–18950. [Google Scholar] [CrossRef]
- Narayan, J.; Bhaumik, A.; Gupta, S.; Joshi, P.; Riley, P.; Narayan, R.J. Formation of self-organized nano- and microdiamond rings. Mater. Res. Lett. 2021, 9, 300–307. [Google Scholar] [CrossRef]
- Gupta, S.; Sachan, R.; Narayan, J. Scale-up of Q-carbon and nanodiamonds by pulsed laser annealing. Diam. Relat. Mater. 2019, 99, 107531. [Google Scholar] [CrossRef]
- Joshi, P.; Gupta, S.; Haque, A.; Narayan, J. Fabrication of ultrahard Q-carbon nanocoatings on AISI 304 and 316 stainless steels and subsequent formation of high-quality diamond films. Diam. Relat. Mater. 2020, 104, 10774. [Google Scholar] [CrossRef]
- Jackson, M.J.; Hyde, L.J.; Ahmed, W.; Sein, H.; Flaxman, R.P. Diamond-Coated Cutting Tools for Biomedical Applications. J. Mater. Eng. Perform. 2004, 13, 421–430. [Google Scholar] [CrossRef]
- Artini, C.; Muolo, M.L.; Passerone, A. Diamond–Metal Interfaces in Cutting Tools: A Review. J. Mater. Sci. 2011, 47, 3252–3264. [Google Scholar] [CrossRef]
- Kawasegi, N.; Ozaki, K.; Morita, N.; Nishimura, K.; Yamaguchi, M. Development and Machining Performance of a Textured Diamond Cutting Tool Fabricated with a Focused Ion Beam and Heat Treatment. Precis. Eng. 2017, 47, 311–320. [Google Scholar] [CrossRef]
- Zong, W.J.; Sun, T.; Li, D.; Cheng, K. Design Criterion for Crystal Orientation of Diamond Cutting Tool. Diam. Relat. Mater. 2009, 18, 642–650. [Google Scholar] [CrossRef]
- Ashkinazi, E.; Fedorov, S.; Khomich, A.; Rogalin, V.; Bolshakov, A.; Sovyk, D.; Grigoriev, S.; Konov, V. Technology Features of Diamond Coating Deposition on a Carbide Tool. C 2022, 8, 77–102. [Google Scholar] [CrossRef]
- Baron, S.; Tounsi, T.; Gäbler, J.; Mahlfeld, G.; Stein, C.; Höfer, M.; Sittinger, V.; Hoffmeister, H.-W.; Herrmann, C.; Dröder, K. Diamond coatings for advanced cutting tools in honing and grinding. Procedia CIRP 2022, 108, 589–594. [Google Scholar] [CrossRef]
- Basso, L.; Cazzanelli, M.; Orlandi, M.; Miotello, A. Nanodiamonds: Synthesis and Application in Sensing, Catalysis, and the Possible Connection with Some Processes Occurring in Space. Appl. Sci. 2020, 10, 4094. [Google Scholar] [CrossRef]
- Remediakis, I.N.; Kopidakis, G.; Kelires, P.C. Softening of Ultra-Nanocrystalline Diamond at Low Grain Sizes. Acta Mater. 2008, 56, 5340–5344. [Google Scholar] [CrossRef] [Green Version]
- Shevchenko, V.Y.; Madison, A.E.; Yur’ev, G.S. Structure of Nanodiamonds. Glass Phys. Chem. 2006, 32, 261–266. [Google Scholar] [CrossRef]
- Narayan, J.; Gupta, S.; Bhaumik, A.; Sachan, R.; Cellini, F.; Riedo, E. Q-Carbon Harder than Diamond. MRS Commun. 2018, 8, 428–436. [Google Scholar] [CrossRef]
- Khosla, N.; Narayan, J. Fabrication of Q-Carbon Nanostructures, Diamond and Their Composites with Wafer-Scale Integration. Crystals 2022, 12, 615. [Google Scholar] [CrossRef]
- Narayan, J.; Khosla, N. Self-Organization of Amorphous Q-Carbon and Q-BN Nanoballs. Carbon 2022, 192, 301–307. [Google Scholar] [CrossRef]
- Hues, S.H.; Lovejoy, L. Ultratrace Impurity Analysis of Wafer Surfaces. In Handbook of Silicon Wafer Cleaning Technology, 2nd ed.; William Andrew Publishing: Norwich, NY, USA, 2008. [Google Scholar] [CrossRef]
- Guy, O.J.; Walker, K.A.D. Graphene Functionalization for Biosensor Applications. In Silicon Carbide Biotechnology, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar] [CrossRef]
- Riley, P.R.; Joshi, P.; Khosla, N.; Narayan, R.J.; Narayan, J. Formation of Q-Carbon with Wafer Scale Integration. Carbon 2022, 196, 972–978. [Google Scholar] [CrossRef]
- Dychalska, A.; Popielarski, P.; Franków, W.; Fabisiak, K.; Paprocki, K.; Szybowicz, M. Study of CVD Diamond Layers with Amorphous Carbon Admixture by Raman Scattering Spectroscopy. Mater. Sci.-Pol. 2015, 33, 799–805. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.J.; Chen, X.H.; Ye, J.S. The Roles of Hydrogen in the Diamond/Amorphous Carbon Phase Transitions of Oxygen Ion Implanted Ultrananocrystalline Diamond Films at Different Annealing Temperatures. AIP Adv. 2012, 2, 042109. [Google Scholar] [CrossRef]
- Thomas, E.L.H.; Ginés, L.; Mandal, S.; Klemencic, G.M.; Williams, O.A. A Simple, Space Constrained NIRIM Type Reactor for Chemical Vapour Deposition of Diamond. AIP Adv. 2018, 8, 035325. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, A.C. Raman Spectroscopy of Graphene and Graphite: Disorder, Electron–Phonon Coupling, Doping and Nonadiabatic Effects. Solid State Commun. 2007, 143, 47–57. [Google Scholar] [CrossRef]
- Narayan, J.; Bhaumik, A. Research Update: Direct Conversion of Amorphous Carbon into Diamond at Ambient Pressures and Temperatures in Air. APL Mater. 2015, 3, 100702. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Sachan, R.; Bhaumik, A.; Pant, P.; Narayan, J. Undercooling Driven Growth of Q-Carbon, Diamond, and Graphite. MRS Commun. 2018, 8, 533–540. [Google Scholar] [CrossRef]
- Bhaumik, A.; Sachan, R.; Narayan, J. A Novel High-Temperature Carbon-Based Superconductor: B-Doped Q-Carbon. J. Appl. Phys. 2017, 122, 045301. [Google Scholar] [CrossRef]
- Katharria, Y.S.; Kumar, S.; Singh, F.; Pivin, J.C.; Kanjilal, D. Synthesis of Buried SiC Using an Energetic Ion Beam. J. Phys. Appl. Phys. 2006, 39, 3969–3973. [Google Scholar] [CrossRef]
- Zhao, Q.; Xu, J.; Xu, X.Y.; Wang, Z.; Yu, D.P. Field Emission from AlN Nanoneedle Arrays. Appl. Phys. Lett. 2004, 85, 5331–5333. [Google Scholar] [CrossRef]
- Bhaumik, A.; Nori, S.; Sachan, R.; Gupta, S.; Kumar, D.; Majumdar, A.K.; Narayan, J. Room-Temperature Ferromagnetism and Extraordinary Hall Effect in Nanostructured Q-Carbon: Implications for Potential Spintronic Devices. ACS Appl. Nano Mater. 2018, 1, 807–819. [Google Scholar] [CrossRef]
- Jiang, J.; Tzeng, Y. Mechanisms of Suppressing Secondary Nucleation for Low-Power and Low-Temperature Microwave Plasma Self-Bias-Enhanced Growth of Diamond Films in Argon Diluted Methane. AIP Adv. 2011, 1, 042117. [Google Scholar] [CrossRef]
Si-C | sp2 | sp3 | C-O | O-C=O | C-O-C | |
---|---|---|---|---|---|---|
pristine NDs | - | 78.4 | 16.8 | - | - | 4.8 |
1600 mJ cm−2 | - | 41.1 | 47.6 | - | - | 11.3 |
2000 mJ cm−2 | 24.8 | 20.7 | 44.0 | 7.6 | 2.9 | - |
3000 mJ cm−2 | 24.9 | 20.2 | 43.1 | 8.1 | 3.7 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hurtuková, K.; Slepičková Kasálková, N.; Fajstavr, D.; Lapčák, L.; Švorčík, V.; Slepička, P. High-Energy Excimer Annealing of Nanodiamond Layers. Nanomaterials 2023, 13, 557. https://doi.org/10.3390/nano13030557
Hurtuková K, Slepičková Kasálková N, Fajstavr D, Lapčák L, Švorčík V, Slepička P. High-Energy Excimer Annealing of Nanodiamond Layers. Nanomaterials. 2023; 13(3):557. https://doi.org/10.3390/nano13030557
Chicago/Turabian StyleHurtuková, Klaudia, Nikola Slepičková Kasálková, Dominik Fajstavr, Ladislav Lapčák, Václav Švorčík, and Petr Slepička. 2023. "High-Energy Excimer Annealing of Nanodiamond Layers" Nanomaterials 13, no. 3: 557. https://doi.org/10.3390/nano13030557
APA StyleHurtuková, K., Slepičková Kasálková, N., Fajstavr, D., Lapčák, L., Švorčík, V., & Slepička, P. (2023). High-Energy Excimer Annealing of Nanodiamond Layers. Nanomaterials, 13(3), 557. https://doi.org/10.3390/nano13030557