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Abstract: Here, we aimed to achieve exposure of a nanodiamond layer to a high-energy excimer laser.
The treatment was realized in high-vacuum conditions. The carbon, in the form of nanodiamonds
(NDs), underwent high-temperature changes. The induced changes in carbon form were studied
with Raman spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction (XRD) and we
searched for the Q-carbon phase in the prepared structure. Surface morphology changes were
detected by atomic force microscopy (AFM) and scanning electron microscopy (SEM). NDs were
exposed to different laser energy values, from 1600 to 3000 mJ cm−2. Using the AFM and SEM
methods, we found that the NDs layer was disrupted with increasing beam energy, to create a
fibrous structure resembling Q-carbon fibers. Layered micro-/nano-spheres, representing the role of
diamonds, were created at the junction of the fibers. A Q-carbon structure (fibers) consisting of 80%
sp3 hybridization was prepared by melting and quenching the nanodiamond film. Higher energy
values of the laser beam (2000 and 3000 mJ cm−2), in addition to oxygen bonds, also induced carbide
bonds characteristic of Q-carbon. Raman spectroscopy confirmed the presence of a diamond (sp3)
phase and a low-intensity graphitic (G) peak occurring in the Q-carbon form samples.

Keywords: carbon; excimer laser; Q-carbon; nanodiamonds; raman spectroscopy; nanostructure;
surface analysis

1. Introduction

Carbon is a widespread and well-known natural element, it has the ability to occur
in several different structural forms, which often have significantly different properties.
Graphite and diamond are the two basic carbon materials found in nature [1]. Thanks to
the hybridization of sp, sp2, and sp3 orbitals, other forms of carbon have been discovered,
such as fullerene [2], carbon nanotubes [3] and nanofibers [4], and graphene [5–8]. In
recent years, the discovery of a new carbon phase called Q-carbon (“quenched” carbon)
has attracted significant attention. Behind this discovery is a group of scientists headed
by Narayan, who described its structure as formed by a unique combination of about
80% sp3 hybridization, the rest being sp2 hybridization [9]. Narayan et al. described the
properties of Q-carbon itself as exceptional. Compared to diamond, Q-carbon has up to
40% more hardness, excellent superconductivity at high temperatures, an extraordinary
Hall effect [10], chemical inertness, and abrasion resistance [11]. Q-carbon has been also
reported as a new radiation-resistant material [12].

Q-carbon is created by nanosecond laser melting of amorphous carbon followed by
ultra-fast cooling, a process called ”quenching” [13]. It has been shown that nanosecond
laser heating of diamond-like carbon (DLC) on sapphire, glass, and polymer substrates can
lead to reduced carbon melting in the supercooled state [14]. Amorphous carbon films, also
known as diamond-like carbon (DLC) coating, are most often prepared through pulsed vapor
deposition (PVD) methods or a combination of PVD and chemical vapor deposition (CVD)
techniques [15]. The CVD method produces thin films by chemical reaction of precursors in
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the gas phase on a heated substrate. Unlike PVD methods, such as evaporation and sputtering,
CVD offers some advantages by relying on chemical reactions that allow tunable deposition
rates, and yields high-quality products with excellent conformability [16]. The pulsed laser
deposition (PLD) technique is a type of PVD [17–19] that differs from other PVD methods
(mentioned above) in two significant ways. First, a high-power pulsed laser is used for
synthesis, which means that the thickness of the deposited material (10–500 nm) [17] can
grow within a few microseconds. Second, due to the rapid, intense heating of the target,
stoichiometric growth can easily be achieved. Compared to the CVD technique, the PLD
method is simple, versatile, fast [20], and cost-effective. It allows for the good control of
thickness and morphology, requires low temperatures for growth, and can be used with
temperature-sensitive materials, especially those with an active chemical surface [18].

During the quenching process, and the overall production of Q-carbon, various carbon
polymorphs are created as side products [21]. Nanodiamonds, the newest member of
the carbon nanoparticle family, with an average size of 5 nm, have attracted enormous
attention due to their distinct physical and chemical properties. A diamond core in the
structure of nanodiamonds provides a chemically inert core, high thermal conductivity,
and hardness [22,23]. Nanodiamonds are also characterized by a low toxicity, excellent
biocompatibility [24], and a large surface area, which is particularly important in the
pharmacy field for drug transport or targeted delivery to specific tissues/organs [22].
Nanodiamonds also have fluorescence capabilities that can be used in the imaging field
as imaging probes [23]. The side product group also includes diamond thin films, one of
the most fascinating and universal materials [10] for various technological applications
of great commercial importance [25]. Depositing a diamond film on the surface of a
single-crystal sapphire is in great demand mainly because of its properties, which are
optical transparency, high melting point, high hardness, chemical inertness, and many
others [25,26]. Applications of diamond film on sapphire include diamond polishing
wheels, corrosion- and radiation-resistant infrared windows, solid-state lasers, and new
scanning probe microscopy applications, such as nanoindentation and high-resolution
imaging of soft samples [25].

After cooling the melt, an obvious Q-carbon/α-carbon interface is formed, where
α-carbon fulfills the function of amorphous carbon with a high content of sp2 hybridization
(≈60%) [27]. The name “alpha” carbon was obtained from the amorphous phase formed
after cooling. It also distinguishes this form from the amorphous phase of Q-carbon and
DLC [28]. This type of carbon (α-carbon), in combination with other phases, increases
the resulting composite material’s toughness and provides energy absorption, which is of
considerable importance for applications in the machine tools industry [21,29]. Thanks
to the CVD technique, it could be feasible to deposit diamonds on the surface of various
substrates and thus improve their properties. One of the primary targets of CVD diamond
applications is the coating of cutting machines [30,31]. These are widely used for ultra-
precision chemical machining due to their excellent wear resistance, sharp cutting edge,
low affinity, and other desirable properties. Even though diamond is considered the hardest
material worldwide, diamond-cutting tools are still subject to wear after prolonged use
or when working with hard materials. This subsequently reduces the machined surface’s
quality and the shape’s accuracy. This is why the industry strives to improve diamond-
cutting machines’ quality and efficiency [32–34], or are even applied to carbide tools [35].

In this study, we modified the nanocrystalline diamond film (NDs) using a laser excimer
beam (1600, 2000, and 3000 mJ cm−2), and investigated its effect on the change in NDs surface
morphology and chemical composition. The surface’s transformation was studied using
atomic force microscopy (AFM) and scanning electron microscopy (SEM). Energy-dispersive
spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and X-ray
diffraction (XRD), these methods were used to observe the changes in the surface’s chemical
composition and its binding relationships leading to Q-carbon formation.
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2. Materials and Methods
2.1. Materials

We used commercially available ultrananocrystalline diamond film (1000 nm thick
film, grain size: 200–300 nm, supplied by Goodfellow Ltd., Huntingdon, UK) prepared by
a chemical vapor deposition (CVD) process on a high-purity silicon wafer. The surface of
the nanodiamond (ND) film was modified with a high-energy pulsed excimer KrF laser
(Coherent Inc., Santa Clara, CA, USA, Leap 100 K) with a wavelength of 248 nm and a
pulse duration of 20–40 ns. The repetition rate of 1 Hz, with output above 1000 mJ, allowed
us to expose an area of 32 × 13 mm2 with a single laser shot. An aperture of 30 × 10 mm2

was used in the experiments, with the application of a lens with the ability to increase the
laser fluence up to 3000 mJ cm−2.

2.2. Analytical Methods

A detailed analysis of the surface morphology and elemental composition was ac-
quired with a scanning electron microscope (SEM) and energy-dispersive X-ray spec-
troscopy (EDS). We used a scanning electron microscope, the LYRA3 GMU (Tescan, Brno,
Czech Republic) with an applied acceleration voltage of 10 kV for the bombarded electrons,
and an F-MaxN analyzer and SDD detector (Oxford Instruments, Abingdon, UK) with an
applied acceleration voltage of 10 kV for EDS.

Atomic force microscopy (AFM) was used to study the surface morphology and
roughness of modified NDs film via the high-power excimer laser. The movement of the tip
as it passed over the sample was recorded, and a point-by-point image of the surface was
compiled. For AFM analysis, we used Dimension ICON (Bruker Corp., Billerica, MA, USA),
and ScanAsyst mode in the air was used for determination. A silicon tip on the nitride lever,
SCANASYST-AIR, with an elasticity constant of 0.4 N m−1, was used. The NanoScope
Analysis software (version 1.80, Bruker Corp., Billerica, MA, USA) was applied for data
processing. The mean roughness value (Ra) represents the average of the deviations from
the center plane of the sample.

The presence and oxidation state of carbon, and the partial presence of oxygen, in the
surface layer was determined by X-ray photoelectron spectroscopy (XPS). An Omicron
Nanotechnology ESCAProbeP spectrometer (Omicron nanotechnology GmbH, Taunusstein,
Germany) was used. The exposed and analyzed area had a dimension of 2 × 3 mm2. The
X-ray source was monochromatic at 1486.7 eV. Atomic concentrations of elements were
determined by the CASA XPS program using an integrated area of spectrum lines quoted
in the database of CASA XPS. The samples were analyzed under a take-off angle of 19◦.

Raman analysis was performed on a dispersed Raman spectrometer DXR Micro-
scope from Thermo Scientific (Waltham, MA, USA), equipped with a confocal microscope
Olympus and thermoelectrically cooled CCD detector. As an excitation source, we used
a solid-state Nd:YAG laser (wavelength 532 nm, maximum power 10 mW). A grating
with 900 lines/mm, 25 µm slit aperture, and 50× magnification objective was utilized.
Measurement conditions for the samples were 10 mW laser power, 10 s acquisition time per
scan, and 20 repetitions. Ten spectra were averaged from each surface. Data were processed
using the Omnic 9 software (Thermo Scientific, Waltham, MA, USA).

The diffraction pattern for the material was collected at room temperature with an
X’Pert3 Powder θ-θ powder diffractometer with parafocusing Bragg-Brentano geometry
using Cu Kα radiation (λ = 1.5418 Å, Ni filter, generator setting: 40 kV, 30 mA). An ultrafast
PIXCEL detector with 255 channels was employed to collect XRD data over the angular
range from 40 to 50◦ 2θ, with a step size of 0.039◦ 2θ and a counting time of 3.9 s/step.

3. Results
3.1. Surface Morphology Using SEM and AFM Methods

In this study, we focused on the possibility of remelting a nanodiamond film to obtain
a new form of carbon called Q-carbon. As already mentioned in the Introduction, Q-carbon
is prepared based on the principle of nanosecond laser-melting of amorphous carbon. At
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the same time, essential by-products, NDs, are formed. The idea of directly converting
prepared NDs into Q-carbon, while eliminating the creation of amorphous carbon via the
PLD method, was designed. Our experiment used a silicon substrate coated with a film
of ultrananocrystalline 200–300 nm nanodiamonds prepared via the CVD method [36].
Since NDs have strong C-C bonds [37], it was necessary to use a pressure chamber and
high-energy values of the laser to disrupt them and create a new phase—in our case,
the fluence 1600, 2000, and 3000 mJ cm−2 was applied. The surface morphology change
after the laser beam application was investigated using the SEM method and the AFM
method. Exposing the NDs film to high energies induced a strong stress in the layer, which
caused the structure to tear, and led to partial remelting of the NDs. Figure 1 shows SEM
images of the created hybrid surface (Figure 1a) after exposure to the beam (3000 mJ cm−2),
together with zoomed-in images of the given areas (Figure 1b,c). As can be seen, after the
pulse annealing of the NDs film, the original sharply defined icosahedral structure of the
NDs (Figure 1c) [38] was transformed into a fibrous structure formed by layered circular
micro-/nano-spheres (Figure 1b).
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Figure 1. Scanning electron microscopy images of NDs film exposed to high-energy excimer laser fluence
for 3000 mJ cm−2. The scanning areas of the hybrid area (a) were 30 × 30 µm2, and scans for fibrous
structure with micro-/nano-balls (b) and original sharply defined structure of NDs (c) were 3 × 3 µm2.

The preparation of a fibrous structure by quenching a supercooled carbon layer has
already been described many times by scientists in several professional articles [14,39].
These research papers proceeded from the assumption that interphase instability occurs at
the film–substrate interface, caused by compressive stress. This subsequently evokes tensile
stress in the top layer, causing it to crack and expose the Q-carbon as a fibrous structure.

According to [9], the Q-carbon fiber’s diameter was 200–500 nm, which corresponds
to the fiber width shown in Figure 2. Figure 2 compares SEM images of the modified NDs
film surface after exposure to different beam energy values (1600, 2000, and 3000 mJ cm−2).
As mentioned above, we prepared micro-/nano-spheres on its surface, in addition to the
fibrous structure. The formation of balls could be caused by various factors that also affect
their functions. The spheres can behave, for example, as microdiamonds, created either
by melting and back-clustering of NDs or as a by-product in the preparation of Q-carbon.
They can also behave like “Q-carbon nanoballs”, that coagulate with each other and form
larger clusters along the chains [40]. The size of the balls depends on the growth rate and
the time. The authors of [41] state that the absence of a nucleation barrier in Q-carbon may
also be responsible for the resulting size of the nanospheres. In our case, the change in
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the fibrous structure’s shape and the balls’ size was also influenced by the laser-annealing
energy, as seen in Figure 2. Taking a closer look at the microstructures, it is seen that when
the laser energy was reduced, the number and size of the balls decreased, and the overall
layering of the structures also decreased. This may be caused by the poor melting of the
NDs film, and therefore the most visible demarcation of the fibrous structure with distinct
micro-/nano-spheres can be seen on the sample using the lowest energy of 1600 mJ cm−2.
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Figure 2. Scanning electron microscopy images of an unmodified (pristine) NDs film, and an NDs
film exposed to high-energy excimer laser and laser fluencies for 1600, 2000, and 3000 mJ cm−2. The
scanning areas were 10 × 10 µm2 (main picture) and 3 × 3 µm2 (corner picture).

Another method used for investigating changes in surface morphology produced
by laser beam exposure was atomic force microscopy (AFM). In Figure 3, we can see the
change from the NDs structure with sharp edges (pristine), to a structure composed of
micro-/nano spheres with intertwined fibers formed after laser application at an energy
of 3000 mJ cm−2. As with the images obtained by the SEM method, in the case of AFM
imaging, it is possible to reshape the pristine NDs film using sufficiently high energy. Due
to the increased fluence of the laser, there was a significant change in the roughness of the
surface. High roughness values corresponded to higher peaks in the structure.

3.2. Surface Chemistry Measured Using EDS and XPS Methods

Changes in the chemical composition of the elements of the NDs film modified by
laser annealing were analyzed using the EDS method. As mentioned in Section 3.1, the
quenching of NDs leads to the film’s destruction (“tearing”) and the creation of new fibrous
structures. This causes a change in the total height of the NDs layer and a change in the
chemical composition. Here, it is important to note that the EDS method measures the
chemical composition of elements to a certain depth, which can detect the presence of
elements other than those on the surface. For example, this phenomenon can be observed
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in a sample of NDs without laser modification (pristine NDs). Figure 4 shows a graph
describing the different element concentrations of the samples depending on the different
energy of a single laser shot, and the EDS map of the distribution of elements on the sample
surface after a laser pulse of 3000 mJ cm−2. Since the NDs film is coated on a silicon
substrate, during the chemical analysis of pristine NDs, in addition to carbon (98.6%),
silicon (0.4%) and oxygen (1.0%) were also present in the form of SiO2 (see the graph
in Figure 4). It can be seen from the graph that laser annealing rapidly increases the
concentration of Si in all samples. The reason for this phenomenon may be the partial
blasting of the NDs film and, thus, the depth measurement of EDS. Another possibility
could be the deposition of silicon and oxygen from the atmosphere after laser deposition,
and exposure of the sample to ambient air.
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However, it is necessary to mention that high-energy electrons excite X-rays to a
certain depth of the sample (up to 3 µm), but these rays have an escape depth that is much
deeper. The main issue applies if an electron beam perpendicular to the surface is used.
Here, a problem can arise when analyzing particles smaller than 0.2 µm on a SiO2 film,
as most of the signal can be generated from the underlying film, and these particles are
incorrectly identified as SiO2 [42].

For a more detailed view of the binding characteristics of the samples, the XPS method
was used, which measures the kinetic energy of electrons from the upper ten atomic
layers [43]. Figure 5 shows XPS C 1 s spectra of pristine NDs and samples exposed to
a single laser shot (1600, 2000, and 3000 mJ cm−2). The deconvolved bonds observed
at 283.4, 284.1–284.2, 284.7–285.3, 286.9, and 289.3–289.7 eV are typical for Si-C bonds,
sp2-hybridized carbon bonds, sp3-hybridized carbon bonds, C-O bonds, and O-C=O
bonds. In the samples of 1600 mJ and pristine NDs, we can observe a peak in the range
of 285.6–286.0 eV, attributed to the C-O-C bond [44]. A great surprise during the spectral
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analysis was that sp2 hybridization occurred in an enormous proportion of up to 78% in
the sample of pristine NDs (see Figure 5). One of the reasons for this unusual composition
may be the processing of the overall resulting film. According to [45], the carbon sp3

and sp2 hybridization ratio depends on the film deposition conditions, and can also vary
from pure diamond to pure graphite. Exposure of the NDs surface to a laser beam (1600,
2000, and 3000 mJ cm−2) led to an increase in sp3 carbon hybridization, surface oxidation,
and the formation of Si-C bonds, at the expense of a decrease in sp2 carbon bonds. Their
conversion to diamond sp3 bonds can cause a decrease in the intensity of sp2 bonds. The
authors of [44] reported that bombarding an NDs film with sufficiently high ion energy
could generate Frenkel pairs, that change the sp2 to sp3 bonds required for the Q-carbon
structure. The presence of oxygen in the 2000 mJ cm−2 and 3000 mJ cm−2 samples could
be caused by the destruction of bonds (the formation of a reaction surface) in the NDs
film when oxygen from the surrounding atmosphere was bound after it was removed
from the vacuum chamber. A peak in the region of 283.4 eV, corresponding to the Si-C
bond, also appeared in these samples. This connection could have occurred due to the high
deformation of the so-called partial blasting of the NDs film prepared on a silicon substrate.
The percentages of each bond in the pristine NDs samples and the samples irradiated with
the laser beam (1600 mJ cm−2, 2000 mJ cm−2, and 3000 mJ cm−2) are shown in Table 1.
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conversion to diamond sp3 bonds can cause a decrease in the intensity of sp2 bonds. The 
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the vacuum chamber. A peak in the region of 283.4 eV, corresponding to the Si-C bond, 
also appeared in these samples. This connection could have occurred due to the high 
deformation of the so-called partial blasting of the NDs film prepared on a silicon 
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Figure 4. The atomic concentrations of C, O, and Si elements (in wt %) were determined using
the energy-dispersive X-ray spectroscopy method for the pristine NDs and NDs film exposed to
high-energy excimer laser and laser fluencies for 1600, 2000, and 3000 mJ cm−2. The figure contains
an EDS map of the distribution of elements (C, Si) on the surface of the sample after a laser pulse of
3000 mJ cm−2.

3.3. Raman Spectroscopy

The bonding characteristics of the samples prepared by a single excimer laser shot
were studied using Raman spectroscopy, describing the bonding relationships in different
structures. The Raman spectra of samples treated with an excimer laser pulse can be divided
into two groups according to the position of the deconvolution peaks. Figure 6 shows the
spectra of samples with deposition energies of 2000 and 3000 mJ cm−2 (primary spectrum),
and a corner spectrum representing the pristine NDs sample with a sample of 1600 mJ cm−2.
As is generally known, the Raman spectra of these structures are characterized by two
significant peaks: the D peak, reflecting the band of defects, and the G peak, characterizing
untransformed graphite. According to [45], diamond films prepared mainly by the CVD
method consist of many small micro-/nano-crystalline diamonds surrounded by a graphitic
or amorphous carbon phase mainly occurring at their grain boundaries. Due to the presence
of these phases, C-H bonds and C-C and C=C transpolyacetal chains are bent/stretched,
which causes the appearance of a Raman peak in the region of 1140 cm−1 [46,47] (see
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the NDs pattern in Figure 6). Additionally, the authors of [45] state that the graphitic (G)
peak observed in NDs films prepared in this way was shifted from the graphitic peak of
1580 cm−1 downwards to a broad band in the region of 1500 to 1600 cm−1.
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Table 1. Content (%) of the deconvoluted peaks in C1s spectrum in pristine NDs samples and samples
with laser beam irradiation (1600, 2000, and 3000 mJ cm−2).

Si-C sp2 sp3 C-O O-C=O C-O-C

pristine NDs - 78.4 16.8 - - 4.8
1600 mJ cm−2 - 41.1 47.6 - - 11.3
2000 mJ cm−2 24.8 20.7 44.0 7.6 2.9 -
3000 mJ cm−2 24.9 20.2 43.1 8.1 3.7 -

In our case, this statement agrees with the XPS spectrum of the pristine NDs sample in
Figure 5, which consists mainly of sp2 hybridized carbon. On the other hand, the D band
characterizing various modifications in the film structure may not be visible in the Raman
spectrum [45]. The 1600 mJ cm−2 sample features very similar deconvoluted peaks to the
pristine NDs sample. This is due to the weak deposition energy of the laser beam on the
surface of the NDs, where no significant change in binding interactions occurred. For all
spectra in Figure 6, we can see a distinct peak in the region of 1332 cm−1, which belongs to
sp3 diamond hybridization or samples containing the diamond phase [48,49]. In the case of
the 2000 mJ cm−2 and 3000 mJ cm−2 samples, it can be either the remains of the NDs film or
the micro-/nano-diamonds formed at the triple points of the intersecting Q-carbon fibrous
structure shown in the SEM images in Figure 2. This statement is also confirmed by the
XPS spectra shown in Figure 5, where a significant conversion of sp2 to sp3 hybridization
can be seen. Since Q-carbon consists of 80% sp3 hybridization, it is assumed that the fibrous
structures that were created contain a Q-carbon phase [50]. There is also a prominent G
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peak (1582 cm−1) in these samples, but at a relatively low intensity. According to [51], the
low intensity of the G peak indicates less graphitization, which appears in samples with
Q-carbon occurrence. At the same time, this can explain the increase in the intensity of the
G peak in the 2000 mJ cm−2 sample compared to the 3000 mJ cm−2 sample. This statement
is also confirmed by the XPS spectra shown in Section 3.2 in Figure 5. It can be seen in the
spectra that the conversion of sp2 carbon to sp3 increases with increasing laser beam energy.
On the other hand, a higher beam energy (2000 and 3000 mJ cm−2) modifies the NDs film
to a greater depth, creating a Si-C bond between the NDs film and the silicon substrate.
Increased oxidation also occurs in these samples, which can be reflected in the lower sp2

and sp3 hybridization content compared to other bonds. The absence of the 2160 cm−1

peak in the Raman spectra reflects the absence of any sp1 hybridization in the eventual
NDs film, Q-carbon, or intermediate amorphous carbon region [11].
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3.4. XRD Analysis

We used the XRD method to confirm the presence of diamond (111) and its modified
form with Q-C. Figure 7 shows the diffractometric peaks of pristine NDs and NDs after laser
annealing at energies of 2000 mJ cm−2 and 3000 mJ cm−2. Many silicon (substrate) peaks
were measured when the samples were analyzed [52,53]. For this reason, we measured a
narrow range of positions where the searched diamond peak and modified carbon should
be located. As can be seen from Figure 7, with increasing energy there was a decrease
in intensity and a broadening of the diamond peak at position 44.1◦. One of the reasons
may be the remelting of the original nanodiamonds, with their reclustering resulting in
larger micro-/nano-diamonds. This statement agrees with the images of the surface created
by SEM and AFM methods in Figures 2 and 3. Other reasons (mentioned in Section 3.1)
may be the micro-stress that occurs after exposure to the laser beam at the film-substrate
interface, where the surface layer cracks and Q-carbon is exposed in the fibrous structure
form. The broadened (111) peak may be due to defects in the carbon nanosheet during
Q-carbon fabrication, which agrees with the Raman spectra in Figure 6. The remaining
peaks in Figure 7 belong to the silicon substrate [29,51,54,55].
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4. Conclusions

In our experiment, we exposed a nanocrystalline diamond film to a laser beam to
investigate the changes to the irradiated sample’s surface morphology and chemical com-
position. NDs were exposed to laser energy values of 1600, 2000, and 3000 mJ cm−2. The
AFM and SEM methods found that the samples were destroyed more in the NDs film with
increasing beam energy to create a fibrous structure resembling Q-carbon fibers. Layered
micro-/nano-spheres, representing the role of diamonds, were created at the three-point
junction of the fibers. After applying the laser beam, the EDS method measured a sig-
nificantly increased silicon concentration in all samples, which comprised approximately
half of the total atomic concentration. This could be caused by the depth measurement of
the EDS method and the partial blasting of the NDs film coated on the silicon substrate.
The maximum amount of oxygen in the laser-exposed samples was 5 wt% of the total
volume. The pristine NDs sample comprised 98.6% pure carbon, with a partially oxidized
surface (1.0 wt%) on a silicon substrate (0.4%). Subsequently, the binding characteristics of
the measured elements were determined using the XPS method. The unmodified sample
(pristine NDs) consisted of 78% sp2 hybridized carbon, while in the laser-exposed samples,
there was a significant conversion of sp2 to sp3 hybridization. As described in several
articles, a Q-carbon structure (fibers) consisting of 80% sp3 hybridization is prepared by
melting and quenching the DLC film. The samples exposed to higher energy values of
the laser beam (2000 and 3000 mJ cm−2) had, in addition to oxygen bonds, carbide bonds
characteristic of Q-carbon production. Raman spectroscopy confirmed the presence of a
diamond (sp3) phase and a low-intensity graphitic (G) peak occurring in the Q-carbon form
samples. By the XRD method we confirmed the presence of diamond (111) and its modified
form with Q-C; with increasing energy, there was a decrease in intensity and a broadening
of the diamond peak at position 44.1◦.
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