Synthesis, Characterization and Potential Antimicrobial Activity of Selenium Nanoparticles Stabilized with Cetyltrimethylammonium Chloride
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Se NPs-CTAC
2.2. Optimization of the Synthesis of Se NPs-CTAC
2.3. Characterization of Se NPs-CTAC
2.4. The Stability of Se NPs-CTAC
2.5. Potential Antibacterial and Fungicidal Activity of Se NPs-CTAC
2.6. Statistical Data Processing
3. Results and Discussion
3.1. Optimization of Parameters for the Synthesis of Se NPs-CTAC
3.2. Transmission Electron Microscopy of Se NPs-CTAC
3.3. Computer Quantum Chemical Modeling of CTAC Molecule and Se NPs-CTAC Molecular Complex
3.4. Spectral Characteristics of Se NPs-CTAC
3.5. The Stability of Se NPs-CTAC at Different pH
3.6. The Stability of Positive and Negative Se NPs Sols at Various Ions
3.7. The Stability of Se NPs-CTAC at Storing
3.8. Potential Antimicrobial Activity of Se NPs-CTAC
4. Conclusions
Limitations of This Study
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nieto-Argüello, A.; Torres-Castro, A.; Villaurrutia-Arenas, R.; Martínez-Sanmiguel, J.J.; González, M.U.; García-Martín, J.M.; Cholula-Díaz, J.L. Green Synthesis and Characterization of Gold-Based Anisotropic Nanostructures Using Bimetallic Nanoparticles as Seeds. Dalton Trans. 2021, 50, 16923–16928. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Cho, H.; Kim, H.J.; Hong, J.W.; Lee, Y.W. Shape- and Size-Controlled Palladium Nanocrystals and Their Electrocatalytic Properties in the Oxidation of Ethanol. Materials 2021, 14, 2970. [Google Scholar] [CrossRef] [PubMed]
- Gautam, S.; Hadley, A.M.K.; Gates, B.D. Controlled Growth of Platinum Nanoparticles during Electrodeposition Using Halide Ion Containing Additives. J. Electrochem. Soc. 2022, 169, 112508. [Google Scholar] [CrossRef]
- Li, Y.; Lo, W.-S.; Zhang, F.; Si, X.; Chou, L.-Y.; Liu, X.-Y.; Williams, B.P.; Li, Y.-H.; Jung, S.-H.; Hsu, Y.-S.; et al. Creating an Aligned Interface between Nanoparticles and MOFs by Concurrent Replacement of Capping Agents. J. Am. Chem. Soc. 2021, 143, 5182–5190. [Google Scholar] [CrossRef] [PubMed]
- Pecoraro, B.M.; Leal, D.F.; Frias-De-Diego, A.; Browning, M.; Odle, J.; Crisci, E. The Health Benefits of Selenium in Food Animals: A Review. J. Anim. Sci. Biotechnol. 2022, 13, 58. [Google Scholar] [CrossRef] [PubMed]
- Hossain, A.; Skalicky, M.; Brestic, M.; Maitra, S.; Sarkar, S.; Ahmad, Z.; Vemuri, H.; Garai, S.; Mondal, M.; Bhatt, R.; et al. Selenium Biofortification: Roles, Mechanisms, Responses and Prospects. Molecules 2021, 26, 881. [Google Scholar] [CrossRef] [PubMed]
- Schiavon, M.; Nardi, S.; dalla Vecchia, F.; Ertani, A. Selenium Biofortification in the 21st Century: Status and Challenges for Healthy Human Nutrition. Plant Soil 2020, 453, 245–270. [Google Scholar] [CrossRef] [PubMed]
- Rizalputri, L.N.; Anshori, I.; Handayani, M.; Gumilar, G.; Septiani, N.L.W.; Hartati, Y.W.; Annas, M.S.; Purwidyantri, A.; Prabowo, B.A.; Yuliarto, B. Facile and Controllable Synthesis of Monodisperse Gold Nanoparticle Bipyramid for Electrochemical Dopamine Sensor. Nanotechnology 2022, 34, 055502. [Google Scholar] [CrossRef]
- Fouda, A.; Hassan, S.E.-D.; Eid, A.M.; Abdel-Rahman, M.A.; Hamza, M.F. Light Enhanced the Antimicrobial, Anticancer, and Catalytic Activities of Selenium Nanoparticles Fabricated by Endophytic Fungal Strain, Penicillium crustosum EP-1. Sci. Rep. 2022, 12, 11834. [Google Scholar] [CrossRef]
- Escobar-Ramírez, M.C.; Castañeda-Ovando, A.; Pérez-Escalante, E.; Rodríguez-Serrano, G.M.; Ramírez-Moreno, E.; Quintero-Lira, A.; Contreras-López, E.; Añorve-Morga, J.; Jaimez-Ordaz, J.; González-Olivares, L.G. Antimicrobial Activity of Se-Nanoparticles from Bacterial Biotransformation. Fermentation 2021, 7, 130. [Google Scholar] [CrossRef]
- Filipović, N.; Ušjak, D.; Milenković, M.T.; Zheng, K.; Liverani, L.; Boccaccini, A.R.; Stevanović, M.M. Comparative Study of the Antimicrobial Activity of Selenium Nanoparticles with Different Surface Chemistry and Structure. Front. Bioeng. Biotechnol. 2021, 8, 624621. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.-K.; Qiu, W.-Y.; Wang, Y.-Y.; Wang, W.-H.; Yang, Y.; Zhang, H.-N. Fabrication and Stabilization of Biocompatible Selenium Nanoparticles by Carboxylic Curdlans with Various Molecular Properties. Carbohydr. Polym. 2018, 179, 19–27. [Google Scholar] [CrossRef]
- Abadi, B.; Hosseinalipour, S.; Nikzad, S.; Pourshaikhali, S.; Fathalipour-Rayeni, H.; Shafiei, G.; Adeli-Sardou, M.; Shakibaie, M.; Forootanfar, H. Capping Agents for Selenium Nanoparticles in Biomedical Applications. J. Clust. Sci. 2022, 34, 1669–1690. [Google Scholar] [CrossRef]
- Zhang, T.; Qi, M.; Wu, Q.; Xiang, P.; Tang, D.; Li, Q. Recent Research Progress on the Synthesis and Biological Effects of Selenium Nanoparticles. Front. Nutr. 2023, 10, 1183487. [Google Scholar] [CrossRef] [PubMed]
- Bisht, N.; Phalswal, P.; Khanna, P.K. Selenium Nanoparticles: A Review on Synthesis and Biomedical Applications. Mater. Adv. 2022, 3, 1415–1431. [Google Scholar] [CrossRef]
- Sarkar, J.; Mridha, D.; Davoodbasha, M.A.; Banerjee, J.; Chanda, S.; Ray, K.; Roychowdhury, T.; Acharya, K.; Sarkar, J. A State-of-the-Art Systemic Review on Selenium Nanoparticles: Mechanisms and Factors Influencing Biogenesis and Its Potential Applications. Biol. Trace Elem. Res. 2023, 201, 5000–5036. [Google Scholar] [CrossRef] [PubMed]
- Souza, L.M.d.S.; Dibo, M.; Sarmiento, J.J.P.; Seabra, A.B.; Medeiros, L.P.; Lourenço, I.M.; Kobayashi, R.K.T.; Nakazato, G. Biosynthesis of Selenium Nanoparticles Using Combinations of Plant Extracts and Their Antibacterial Activity. Curr. Res. Green Sustain. Chem. 2022, 5, 100303. [Google Scholar] [CrossRef]
- Ghaderi, R.S.; Adibian, F.; Sabouri, Z.; Davoodi, J.; Kazemi, M.; Amel Jamehdar, S.; Meshkat, Z.; Soleimanpour, S.; Daroudi, M. Green Synthesis of Selenium Nanoparticle by Abelmoschus Esculentus Extract and Assessment of Its Antibacterial Activity. Mater. Technol. 2021, 37, 1289–1297. [Google Scholar] [CrossRef]
- Sarkar, R.D.; Lahkar, P.; Kalita, M.C. Glycosmis pentaphylla (Retz.) DC Leaf Extract Mediated Synthesis of Selenium Nanoparticle and Investigation of Its Antibacterial Activity against Urinary Tract Pathogens. Bioresour. Technol. Rep. 2022, 17, 100894. [Google Scholar] [CrossRef]
- Mariadoss, A.V.A.; Saravanakumar, K.; Sathiyaseelan, A.; Naveen, K.V.; Wang, M.H. Enhancement of Anti-Bacterial Potential of Green Synthesized Selenium Nanoparticles by Starch Encapsulation. Microb. Pathog. 2022, 167, 105544. [Google Scholar] [CrossRef]
- Shakeri, F.; Zaboli, F.; Fattahi, E.; Babavalian, H. Biosynthesis of Selenium Nanoparticles and Evaluation of Its Antibacterial Activity against Pseudomonas aeruginosa. Adv. Mater. Sci. Eng. 2022, 2022, 411804. [Google Scholar] [CrossRef]
- Salem, S.S.; Badawy, M.S.E.M.; Al-Askar, A.A.; Arishi, A.A.; Elkady, F.M.; Hashem, A.H. Green Biosynthesis of Selenium Nanoparticles Using Orange Peel Waste: Characterization, Antibacterial and Antibiofilm Activities against Multidrug-Resistant Bacteria. Life 2022, 12, 893. [Google Scholar] [CrossRef] [PubMed]
- El-Ghazaly, M.A.; Fadel, N.; Rashed, E.; El-Batal, A.; Kenawy, S.A. Anti-Inflammatory Effect of Selenium Nanoparticles on the Inflammation Induced in Irradiated Rats. Can. J. Physiol. Pharmacol. 2017, 95, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Hashemi-Firouzi, N.; Afshar, S.; Asl, S.S.; Samzadeh-Kermani, A.; Gholamigeravand, B.; Amiri, K.; Majidi, M.; Shahidi, S. The Effects of Polyvinyl Alcohol-Coated Selenium Nanoparticles on Memory Impairment in Rats. Metab. Brain Dis. 2022, 37, 3011–3021. [Google Scholar] [CrossRef] [PubMed]
- Tran, P.A.; O’Brien-Simpson, N.; Palmer, J.A.; Bock, N.; Reynolds, E.C.; Webster, T.J.; Deva, A.; Morrison, W.A.; O’Connor, A.J. Selenium Nanoparticles as Anti-Infective Implant Coatings for Trauma Orthopedics against Methicillin-Resistant Staphylococcus aureus and Epidermidis: In Vitro and in Vivo Assessment. Int. J. Nanomed. 2019, 14, 4613–4624. [Google Scholar] [CrossRef] [PubMed]
- Blinov, A.V.; Kostenko, K.V.; Gvozdenko, A.A.; Maglakelidze, D.G.; Golik, A.B.; Nagdalian, A.A.; Statsenko, E.N.; Nikulnikova, N.N.; Remizov, D.M.; Verevkina, M.N.; et al. Study of Stabilization of Selenium Nanoparticles by Polysaccharides. J. Hyg. Eng. Des. 2021, 34, 209–216. [Google Scholar]
- Zhang, C.; Zhai, X.; Zhao, G.; Ren, F.; Leng, X. Synthesis, Characterization, and Controlled Release of Selenium Nanoparticles Stabilized by Chitosan of Different Molecular Weights. Carbohydr. Polym. 2015, 134, 158–166. [Google Scholar] [CrossRef]
- Kong, H.; Yang, J.; Zhang, Y.; Fang, Y.; Nishinari, K.; Phillips, G.O. Synthesis and Antioxidant Properties of Gum Arabic-Stabilized Selenium Nanoparticles. Int. J. Biol. Macromol. 2014, 65, 155–162. [Google Scholar] [CrossRef]
- Ameh, T.; Zarzosa, K.; Dickinson, J.; Braswell, W.E.; Sayes, C.M. Nanoparticle Surface Stabilizing Agents Influence Antibacterial Action. Front. Microbiol. 2023, 14, 1119550. [Google Scholar] [CrossRef]
- Cortés, H.; Hernández-Parra, H.; Bernal-Chávez, S.A.; Prado-Audelo, M.L.D.; Caballero-Florán, I.H.; Borbolla-Jiménez, F.V.; González-Torres, M.; Magaña, J.J.; Leyva-Gómez, G. Non-Ionic Surfactants for Stabilization of Polymeric Nanoparticles for Biomedical Uses. Materials 2021, 14, 3197. [Google Scholar] [CrossRef]
- Jennings, M.C.; Minbiole, K.P.C.; Wuest, W.M. Quaternary Ammonium Compounds: An Antimicrobial Mainstay and Platform for Innovation to Address Bacterial Resistance. ACS Infect. Dis. 2015, 1, 288–303. [Google Scholar] [CrossRef] [PubMed]
- Colafemmina, G.; Palazzo, G.; Mateos, H.; Amin, S.; Fameau, A.-L.; Olsson, U.; Gentile, L. The Cooling Process Effect on the Bilayer Phase State of the CTAC/Cetearyl Alcohol/Water Surfactant Gel. Colloids Surf. A Physicochem. Eng. Asp. 2020, 597, 124821. [Google Scholar] [CrossRef]
- Slesiona, N.; Thamm, S.; Stolle, H.L.K.S.; Weißenborn, V.; Müller, P.; Csáki, A.; Fritzsche, W. DNA-Biofunctionalization of CTAC-Capped Gold Nanocubes. Nanomaterials 2020, 10, 1119. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Niu, L.N.; Ma, S.; Li, J.; Tay, F.R.; Chen, J.H. Quaternary ammonium-based biomedical materials: State-of-the-art, toxicological aspects and antimicrobial resistance. Prog. Polym. Sci. 2017, 71, 53–90. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Prasad, K.S. Role of Nano-Selenium in Health and Environment. J. Biotechnol. 2021, 325, 152–163. [Google Scholar] [CrossRef] [PubMed]
- Mirza, K.; Naaz, F.; Ahmad, T.; Manzoor, N.; Sardar, M. Development of Cost-Effective, Ecofriendly Selenium Nanoparticle-Functionalized Cotton Fabric for Antimicrobial and Antibiofilm Activity. Fermentation 2023, 9, 18. [Google Scholar] [CrossRef]
- Chauhan, P.; Chaudhary, S. Role of Surface Modification on Selenium Nanoparticles: Enumerating the Optical, Thermal and Structural Properties. Opt. Mater. 2019, 97, 109380. [Google Scholar] [CrossRef]
- Chauhan, P.; Bhasin, K.K.; Chaudhary, S. High Selectivity and Adsorption Proficiency of Surfactant-Coated Selenium Nanoparticles for Dye Removal Application. Environ. Sci. Pollut. Res. 2021, 28, 61344–61359. [Google Scholar] [CrossRef]
- Meena, S.K.; Meena, C. The Implication of Adsorption Preferences of Ions and Surfactants on the Shape Control of Gold Nanoparticles: A Microscopic, Atomistic Perspective. Nanoscale 2021, 13, 19549–19560. [Google Scholar] [CrossRef]
- Shurygina, I.A.; Prozorova, G.F.; Trukhan, I.S.; Korzhova, S.A.; Fadeeva, T.V.; Pozdnyakov, A.S.; Dremina, N.N.; Emel’yanov, A.I.; Kuznetsova, N.P.; Shurygin, M.G. NonToxic Silver/Poly-1-Vinyl-1,2,4-Triazole Nanocomposite Materials with Antibacterial Activity. Nanomaterials 2020, 10, 1477. [Google Scholar] [CrossRef]
- Ali, A.; Ovais, M.; Cui, X.; Rui, Y.; Chen, C. Safety Assessment of Nanomaterials for Antimicrobial Applications. Chem. Res. Toxicol. 2020, 33, 1082–1109. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Ovais, M.; Zhou, H.; Rui, Y. Tailoring metal-organic frameworks-based nanozymes for bacterial theranostics. Biomaterials 2021, 275, 120951. [Google Scholar] [CrossRef] [PubMed]
- Hemeg, H. Nanomaterials for Alternative Antibacterial Therapy. Int. J. Nanomed. 2017, 12, 8211–8225. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Hu, C.; Shao, L. The Antimicrobial Activity of Nanoparticles: Present Situation and Prospects for the Future. Int. J. Nanomed. 2017, 12, 1227–1249. [Google Scholar] [CrossRef] [PubMed]
- Eleraky, N.E.; Allam, A.; Hassan, S.B.; Omar, M.M. Nanomedicine Fight against Antibacterial Resistance: An Overview of the Recent Pharmaceutical Innovations. Pharmaceutics 2020, 12, 142. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yang, J.; Wang, L.; Ran, B.; Jia, Y.; Zhang, L.; Yang, G.; Shao, H.; Jiang, X. Pharmaceutical intermediate-modified gold nanoparticles: Against multidrug-resistant bacteria and wound-healing application via an electrospun scaffold. ACS Nano 2017, 11, 5737–5745. [Google Scholar] [CrossRef] [PubMed]
- Blinov, A.V.; Nagdalian, A.A.; Siddiqui, S.A.; Maglakelidze, D.G.; Gvozdenko, A.A.; Blinova, A.A.; Yasnaya, M.A.; Golik, A.B.; Rebezov, M.B.; Jafari, S.M.; et al. Synthesis and Characterization of Selenium Nanoparticles Stabilized with Cocamidopropyl Betaine. Sci. Rep. 2022, 12, 21975. [Google Scholar] [CrossRef]
- Kattenborn, T.; Leitloff, J.; Schiefer, F.; Hinz, S. Review on Convolutional Neural Networks (CNN) in Vegetation Remote Sensing. ISPRS J. Photogramm. Remote Sens. 2021, 173, 24–49. [Google Scholar] [CrossRef]
- Kalinin, S.V.; Ophus, C.; Voyles, P.M.; Erni, R.; Kepaptsoglou, D.; Grillo, V.; Lupini, A.R.; Oxley, M.P.; Schwenker, E.; Chan, M.K.Y.; et al. Machine Learning in Scanning Transmission Electron Microscopy. Nat. Rev. Methods Prim. 2022, 2, 11. [Google Scholar] [CrossRef]
- Fu, R.; Lu, Y.; Cheng, W. Soft Plasmonics: Design, Fabrication, Characterization, and Applications. Adv. Opt. Mater. 2021, 10, 2101436. [Google Scholar] [CrossRef]
- Ferro, C.; Florindo, H.F.; Santos, H.A. Selenium Nanoparticles for Biomedical Applications: From Development and Characterization to Therapeutics. Adv. Healthc. Mater. 2021, 10, 2100598. [Google Scholar] [CrossRef] [PubMed]
- Gallego-Urrea, J.A.; Perez Holmberg, J.; Hassellöv, M. Influence of Different Types of Natural Organic Matter on Titania Nanoparticle Stability: Effects of Counter Ion Concentration and PH. Environ. Sci. Nano 2014, 1, 181–189. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in Vitro Evaluating Antimicrobial Activity: A Review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, S.; Walter, S.; Blume, A.-K.; Fuchs, S.; Schmidt, C.; Scholz, A.; Gerlach, R.G. High-Throughput Quantification of Bacterial-Cell Interactions Using Virtual Colony Counts. Front. Cell. Infect. Microbiol. 2018, 8, 43. [Google Scholar] [CrossRef] [PubMed]
- Bin Ahmad, M.; Lim, J.J.; Shameli, K.; Ibrahim, N.A.; Tay, M.Y.; Chieng, B.W. Antibacterial Activity of Silver Bionanocomposites Synthesized by Chemical Reduction Route. Chem. Cent. J. 2012, 6, 101. [Google Scholar] [CrossRef] [PubMed]
- Leñini, C.; Rodriguez Ayala, F.; Goñi, A.J.; Rateni, L.; Nakamura, A.; Grau, R.R. Probiotic Properties of Bacillus Subtilis DG101 Isolated from the Traditional Japanese Fermented Food Nattō. Front. Microbiol. 2023, 14, 1253480. [Google Scholar] [CrossRef] [PubMed]
- Blinov, A.V.; Maglakelidze, D.G.; Rekhman, Z.A.; Yasnaya, M.A.; Gvozdenko, A.A.; Golik, A.B.; Blinova, A.A.; Kolodkin, M.A.; Alharbi, N.S.; Kadaikunnan, S.; et al. Investigation of the Effect of Dispersion Medium Parameters on the Aggregative Stability of Selenium Nanoparticles Stabilized with Catamine AB. Micromachines 2023, 14, 433. [Google Scholar] [CrossRef]
- Liu, Y.; Zhong, Q.; Zhang, T. Preparation of Cationic Surfactant Intercalated Graphene Oxide and Quantitative Determination of the Interlamellar Spacing. Fuller. Nanotub. Carbon Nanostruct. 2014, 23, 196–202. [Google Scholar] [CrossRef]
- Tugarova, A.V.; Mamchenkova, P.V.; Dyatlova, Y.A.; Kamnev, A.A. FTIR and Raman Spectroscopic Studies of Selenium Nanoparticles Synthesised by the Bacterium Azospirillum thiophilum. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 192, 458–463. [Google Scholar] [CrossRef]
- El-Badri, A.M.; Hashem, A.M.; Batool, M.; Sherif, A.; Nishawy, E.; Ayaad, M.; Hassan, H.M.; Elrewainy, I.M.; Wang, J.; Kuai, J.; et al. Comparative Efficacy of Bio-Selenium Nanoparticles and Sodium Selenite on Morpho-Physiochemical Attributes under Normal and Salt Stress Conditions, besides Selenium Detoxification Pathways in Brassica napus L. J. Nanobiotechnol. 2022, 20, 163. [Google Scholar] [CrossRef]
- Chen, W.; Cheng, H.; Xia, W. Construction of Polygonatum sibiricum Polysaccharide Functionalized Selenium Nanoparticles for the Enhancement of Stability and Antioxidant Activity. Antioxidants 2022, 11, 240. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Choi, S.; Choi, J.; Seok, H.; Park, K.-O.; Cho, Y.; Park, K.; Jeon, S.; Kim, H.-U.; Kim, T. Development of a Single Particle Sizing System for Monitoring Abrasive Particles in Chemical Mechanical Polishing Process. J. Mech. Sci. Technol. 2023, 37, 1317–1324. [Google Scholar] [CrossRef]
- Mohammadi-Jam, S.; Waters, K.E.; Greenwood, R.W. A Review of Zeta Potential Measurements Using Electroacoustics. Adv. Colloid Interface Sci. 2022, 309, 102778. [Google Scholar] [CrossRef]
- Hassan, R.M.; Elsayed, M.; Kholief, T.E.; Hassanen, N.H.M.; Gafer, J.A.; Attia, Y.A. Mitigating Effect of Single or Combined Administration of Nanoparticles of Zinc Oxide, Chromium Oxide, and Selenium on Genotoxicity and Metabolic Insult in Fructose/Streptozotocin Diabetic Rat Model. Environ. Sci. Pollut. Res. 2021, 28, 48517–48534. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Liu, H.; Yang, R.; Zhou, W.; Liu, J. Aggregation and Stability of Selenium Nanoparticles: Complex Roles of Surface Coating, Electrolytes and Natural Organic Matter. J. Environ. Sci. 2023, 130, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Guleria, A.; Baby, C.M.; Tomy, A.; Maurya, D.K.; Neogy, S.; Debnath, A.K.; Adhikari, S. Size Tuning, Phase Stabilization, and Anticancer Efficacy of Amorphous Selenium Nanoparticles: Effect of Ion-Pair Interaction, −OH Functionalization, and Reuse of RTILs as Host Matrix. J. Phys. Chem. C 2021, 125, 25. [Google Scholar] [CrossRef]
- Gao, X.; Ren, K.; Zhu, Z.; Zhang, J.; Li, S.; Wang, J.; Xu, Y. Specific Ion Effects: The Role of Anions in the Aggregation of Permanently Charged Clay Mineral Particles. J. Soils Sediments 2023, 23, 263–272. [Google Scholar] [CrossRef]
- Huang, Y.; Su, E.; Ren, J.; Qu, X. The Recent Biological Applications of Selenium-Based Nanomaterials. Nano Today 2021, 38, 101205. [Google Scholar] [CrossRef]
- Verevkina, M.; Goncharov, V.; Nesmeyanov, E.; Kamalova, O.; Baklanov, I.; Pokhilko, A.; Nagapetova, A.; Miroshnichenko, P. Application of the Se NPs-Chitosan Molecular Complex for the Correction of Selenium Deficiency in Rats Model. Potravin. Slovak J. Food Sci. 2023, 17, 455–466. [Google Scholar] [CrossRef]
- Song, X.; Chen, Y.; Sun, H.; Liu, X.; Leng, X. Physicochemical Stability and Functional Properties of Selenium Nanoparticles Stabilized by Chitosan, Carrageenan, and Gum Arabic. Carbohydr. Polym. 2021, 255, 117379. [Google Scholar] [CrossRef]
- Khurana, A.; Tekula, S.; Saifi, M.A.; Venkatesh, P.; Godugu, C. Therapeutic Applications of Selenium Nanoparticles. Biomed. Pharmacother. 2019, 111, 802–812. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Liu, T.; Li, J.; Mai, F.; Li, J.; Chen, Y.; Jing, Y.; Dong, X.; Lin, L.; He, J.; et al. Selenium Nanoparticles as New Strategy to Potentiate Γδ T Cell Anti-Tumor Cytotoxicity through Upregulation of Tubulin-α Acetylation. Biomaterials 2019, 222, 119397. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.-D.; Xu, Q.-J.; Liu, J.-Y.; Han, Z.-X.; Zhu, Y.-G.; Zhao, H.-P. Will a Non-Antibiotic Metalloid Enhance the Spread of Antibiotic Resistance Genes: The Selenate Story. Environ. Sci. Technol. 2020, 55, 1004–1014. [Google Scholar] [CrossRef] [PubMed]
- Tajkarimi, M.; Ibrahim, S.A. Antimicrobial Activity of Ascorbic Acid Alone or in Combination with Lactic Acid on Escherichia Coli O157:H7 in Laboratory Medium and Carrot Juice. Food Control 2011, 22, 801–804. [Google Scholar] [CrossRef]
- Voumard, M.; Breider, F.; von Gunten, U. Effect of Cetyltrimethylammonium Chloride on Various Escherichia Coli Strains and Their Inactivation Kinetics by Ozone and Monochloramine. Water Res. 2022, 216, 118278. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Deng, J.; Liang, J.; Shan, C.; Tong, M. Efficient Bacteria Capture and Inactivation by Cetyltrimethylammonium Bromide Modified Magnetic Nanoparticles. Colloids Surf. B Biointerfaces 2015, 136, 659–665. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Green, J.; Korza, G.; Setlow, P. Killing of Spores of Bacillus Species by Cetyltrimethylammonium Bromide. J. Appl. Microbiol. 2019, 126, 1391–1401. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, M.; Hafezi, S. Antibacterial Effect of Selenium Hybrid Nanoparticles and Sea Cucumber Extract on E. Coli, Micrococcus luteus and Bacillus cereus. J. Shahid Sadoughi Univ. Med. Sci. 2023, 31, 5. [Google Scholar] [CrossRef]
- Alkhathlan, H.; Khan, M.; Khan, S.T.; Khan, M.; Adil, S.F.; Musarrat, J.; Al-Warthan, A.; Siddiqui, M.R.H.; Al-Khedhairy, A.A. Antibacterial Properties of Silver Nanoparticles Synthesized Using Pulicaria glutinosa Plant Extract as a Green Bioreductant. Int. J. Nanomed. 2014, 9, 3551–3565. [Google Scholar] [CrossRef]
- Prakash, P.; Gnanaprakasam, P.; Emmanuel, R.; Arokiyaraj, S.; Saravanan, M. Green Synthesis of Silver Nanoparticles from Leaf Extract of Mimusops elengi, Linn. for Enhanced Antibacterial Activity against Multi Drug Resistant Clinical Isolates. Colloids Surf. B Biointerfaces 2013, 108, 255–259. [Google Scholar] [CrossRef]
- Essa, A.M.M.; Khallaf, M.K. Antimicrobial Potential of Consolidation Polymers Loaded with Biological Copper Nanoparticles. BMC Microbiol. 2016, 16, 144. [Google Scholar] [CrossRef] [PubMed]
- Vahdati, M.; Tohidi Moghadam, T. Synthesis and Characterization of Selenium Nanoparticles-Lysozyme Nanohybrid System with Synergistic Antibacterial Properties. Sci. Rep. 2020, 10, 510. [Google Scholar] [CrossRef]
- Khudier, M.A.A.; Hammadi, H.A.; Atyia, H.T.; Al-Karagoly, H.; Albukhaty, S.; Sulaiman, G.M.; Dewir, Y.H.; Mahood, H.B. Antibacterial Activity of Green Synthesized Selenium Nanoparticles Using Vaccinium arctostaphylos (L.) Fruit Extract. Cogent Food Agric. 2023, 9, 2245612. [Google Scholar] [CrossRef]
- Hashem, A.H.; Al-Askar, A.A.; Haponiuk, J.; Abd-Elsalam, K.A.; Hasanin, M.S. Biosynthesis, Characterization, and Antifungal Activity of Novel Trimetallic Copper Oxide–Selenium–Zinc Oxide Nanoparticles against Some Mucorales Fungi. Microorganisms 2023, 11, 1380. [Google Scholar] [CrossRef] [PubMed]
- Salem, M.F.; Abd-Elraoof, W.A.; Tayel, A.A.; Alzuaibr, F.M.; Abonama, O.M. Antifungal Application of Biosynthesized Selenium Nanoparticles with Pomegranate Peels and Nanochitosan as Edible Coatings for Citrus Green Mold Protection. J. Nanobiotechnol. 2022, 20, 182. [Google Scholar] [CrossRef] [PubMed]
- Hashem, A.H.; Abdelaziz, A.M.; Askar, A.A.; Fouda, H.M.; Khalil, A.M.A.; Abd-Elsalam, K.A.; Khaleil, M.M. Bacillus megaterium-Mediated Synthesis of Selenium Nanoparticles and Their Antifungal Activity against Rhizoctonia solani in Faba Bean Plants. J. Fungi 2021, 7, 195. [Google Scholar] [CrossRef]
- Alvi, G.B.; Iqbal, M.S.; Ghaith, M.M.S.; Haseeb, A.; Ahmed, B.; Qadir, M.I. Biogenic Selenium Nanoparticles (SeNPs) from Citrus Fruit Have Anti-Bacterial Activities. Sci. Rep. 2021, 11, 4811. [Google Scholar] [CrossRef]
- Islam, S.N.; Naqvi, S.M.A.; Raza, A.; Jaiswal, A.; Singh, A.K.; Dixit, M.; Barnwal, A.; Gambhir, S.; Ahmad, A. Mycosynthesis of Highly Fluorescent Selenium Nanoparticles from Fusarium oxysporum, Their Antifungal Activity against Black Fungus Aspergillus niger, and in-Vivo Biodistribution Studies. 3 Biotech 2022, 12, 309. [Google Scholar] [CrossRef]
- Jothi, R.; Sangavi, R.; Raja, V.; Kumar, P.; Pandian, S.K.; Gowrishankar, S. Alteration of Cell Membrane Permeability by Cetyltrimethylammonium Chloride Induces Cell Death in Clinically Important Candida Species. Int. J. Environ. Res. Public Health 2023, 20, 27. [Google Scholar] [CrossRef]
- Qiu, Q.; Wu, J.; Quan, Z.; Zhang, H.; Qin, X.; Wang, R.; Yu, J. Electrospun Nanofibers of Polyelectrolyte–Surfactant Complexes for Antibacterial Wound Dressing Application. Soft Matter 2019, 15, 10020–10028. [Google Scholar] [CrossRef]
- Kliewer, S.; Wicha, S.G.; Bröker, A.; Naundorf, T.; Catmadim, T.; Oellingrath, E.K.; Rohnke, M.; Streit, W.R.; Vollstedt, C.; Kipphardt, H.; et al. Contact-Active Antibacterial Polyethylene Foils via Atmospheric Air Plasma Induced Polymerisation of Quaternary Ammonium Salts. Colloids Surf. B Biointerfaces 2020, 186, 110679. [Google Scholar] [CrossRef]
- Yu, L.; He, T.; Yao, J.; Xu, W.; Peng, S.; Feng, P.; Shuai, C. Cu Ions and Cetyltrimethylammonium Bromide Loaded into Montmorillonite: A Synergistic Antibacterial System for Bone Scaffolds. Mater. Chem. Front. 2022, 6, 103–116. [Google Scholar] [CrossRef]
- Al-hakimi, A.N.; Asnag, G.M.; Alminderej, F.; Alhagri, I.A.; Al-Hazmy, S.M.; Abdallah, E.M. Enhanced Structural, Optical, Electrical Properties and Antibacterial Activity of Selenium Nanoparticles Loaded PVA/CMC Blend for Electrochemical Batteries and Food Packaging Applications. Polym. Test. 2022, 116, 107794. [Google Scholar] [CrossRef]
- Shakola, T.V.; Rubanik, V.V.; Rubanik, V.V., Jr.; Kurliuk, A.V.; Kirichuk, A.A.; Tskhovrebov, A.G.; Egorov, A.R.; Kritchenkov, A.S. Benzothiazole Derivatives of Chitosan and Their Derived Nanoparticles: Synthesis and In Vitro and In Vivo Antibacterial Effects. Polymers 2023, 15, 3469. [Google Scholar] [CrossRef] [PubMed]
- Lunkov, A.; Konovalova, M.; Shagdarova, B.; Zhuikova, Y.; Il’ina, A.; Varlamov, V. Synthesis of Selenium Nanoparticles Modified by Quaternary Chitosan Covalently Bonded with Gallic Acid. Polymers 2023, 15, 2123. [Google Scholar] [CrossRef] [PubMed]
- Niranjan, R.; Zafar, S.; Lochab, B.; Priyadarshini, R. Synthesis and Characterization of Sulfur and Sulfur-Selenium Nanoparticles Loaded on Reduced Graphene Oxide and Their Antibacterial Activity against Gram-Positive Pathogens. Nanomaterials 2022, 12, 191. [Google Scholar] [CrossRef] [PubMed]
- Rangrazi, A.; Bagheri, H.; Ghazvini, K.; Boruziniat, A.; Darroudi, M. Synthesis and Antibacterial Activity of Colloidal Selenium Nanoparticles in Chitosan Solution: A New Antibacterial Agent. Mater. Res. Express 2020, 6, 1250h3. [Google Scholar] [CrossRef]
- Hou, J.; Tamura, Y.; Lu, H.-Y.; Takahashi, Y.; Kasugai, S.; Nakata, H.; Kuroda, S. An In Vitro Evaluation of Selenium Nanoparticles on Osteoblastic Differentiation and Antimicrobial Properties against Porphyromonas gingivalis. Nanomaterials 2022, 12, 1850. [Google Scholar] [CrossRef]
- Boroumand, S.; Safari, M.; Shaabani, E.; Shirzad, M.; Faridi-Majidi, R. Selenium Nanoparticles: Synthesis, Characterization and Study of Their Cytotoxicity, Antioxidant and Antibacterial Activity. Mater. Res. Express 2019, 6, 0850d8. [Google Scholar] [CrossRef]
- Han, H.-W.; Patel, K.D.; Kwak, J.-H.; Jun, S.-K.; Jang, T.-S.; Lee, S.-H.; Knowles, J.C.; Kim, H.-W.; Lee, H.-H.; Lee, J.-H. Selenium Nanoparticles as Candidates for Antibacterial Substitutes and Supplements against Multidrug-Resistant Bacteria. Biomolecules 2021, 11, 1028. [Google Scholar] [CrossRef]
- Lesnichaya, M.V.; Malysheva, S.F.; Belogorlova, N.A.; Graskova, I.A.; Gazizova, A.V.; Perfilyeva, A.I.; Nozhkina, O.A.; Sukhov, B.G. Synthesis and antimicrobial activity of arabinogalactan-stabilized selenium nanoparticles from sodium bis(2-phenylethyl)diselenophosphinate. Russ. Chem. Bull. 2019, 68, 2245–2251. [Google Scholar] [CrossRef]
- Lesnichaya, M.; Perfileva, A.; Nozhkina, O.; Gazizova, A.; Graskova, I. Synthesis, toxicity evaluation and determination of possible mechanisms of antimicrobial effect of arabinogalactane-capped selenium nanoparticles. J. Trace Elem. Med. Biol. 2022, 69, 126904. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Holden, J.A.; Heath, D.E.; O’Brien-Simpson, N.M.; O’Connor, A.J. Engineering highly effective antimicrobial selenium nanoparticles through control of particle size. Nanoscale 2019, 11, 14937–14951. [Google Scholar] [CrossRef] [PubMed]
- Serov, D.A.; Khabatova, V.V.; Vodeneev, V.; Li, R.; Gudkov, S.V. A Review of the Antibacterial, Fungicidal and Antiviral Properties of Selenium Nanoparticles. Materials 2023, 16, 5363. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Zhang, S.; Gadd, G.M.; McGrath, J.; Rooney, D.W.; Zhao, Q. Fungal-derived selenium nanoparticles and their potential applications in electroless silver coatings for preventing pin-tract infections. Regen. Biomater. 2022, 9, rbac013. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, B.; Leena Panigrahi, L.; Jena, S.; Jha, S.; Arakha, M. Oxidative stress generated due to photocatalytic activity of biosynthesized selenium nanoparticles triggers cytoplasmic leakage leading to bacterial cell death. RSC Adv. 2023, 13, 11406–11414. [Google Scholar] [CrossRef] [PubMed]
- Al Jahdaly, B.A.; Al-Radadi, N.S.; Eldin, G.M.; Almahri, A.; Ahmed, M.; Shoueir, K.; Janowska, I. Selenium nanoparticles synthesized using an eco-friendly method: Dye decolorization from aqueous solutions, cell viability, antioxidant, and antibacterial effectiveness. J. Mater. Res. Technol. 2021, 11, 85–97. [Google Scholar] [CrossRef]
- Pekarkova, J.; Gablech, I.; Fialova, T.; Bilek, O.; Fohlerova, Z. Modifications of Parylene by Microstructures and Selenium Nanoparticles: Evaluation of Bacterial and Mesenchymal Stem Cell Viability. Front. Bioeng. Biotechnol. 2021, 9, 782799. [Google Scholar] [CrossRef]
Sample Num. | C (H2SeO3) (mg/mL) | C (CTAC) (mg/mL) | C (Ascorbic Acid) (mg/mL) |
---|---|---|---|
1 | 0.48 | 0.61 | 5.83 |
2 | 0.48 | 4.86 | 46.6 |
3 | 0.48 | 38.89 | 372.8 |
4 | 3.8 | 0.61 | 46.6 |
5 | 3.8 | 4.86 | 372.8 |
6 | 3.8 | 38.89 | 5.83 |
7 | 30.4 | 0.61 | 372.8 |
8 | 30.4 | 4.86 | 5.83 |
9 | 30.4 | 38.89 | 46.6 |
Sample | Concentration, mmol/L | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
Selenious acid | 43.9300 | 4.3930 | 0.4393 | 0.0439 | 0.0044 |
Ascorbic acid | 43.7500 | 4.3750 | 0.4375 | 0.0438 | 0.0044 |
CTAC | 832.2100 | 83.2210 | 8.3220 | 0.8320 | 0.0832 |
Se NPs-CTAC | 19.3900 | 1.9390 | 0.1940 | 0.0194 | 0.0019 |
Sample Num. | ζ-Potential (mV) | rav (nm) |
---|---|---|
1 | 28.04 | 21 ± 4 |
2 | 36.49 | 21 ± 2 |
3 | −106.23 | 113 ± 15 |
4 | 52.32 | 21 ± 2 |
5 | 16.21 | 64 ± 4 |
6 | −76.20 | 27 ± 3 |
7 | 15.68 | 28 ± 2 |
8 | 11.38 | 21 ± 3 |
9 | −1.72 | 25 ± 3 |
Substance | Bond | E | HOMO | LUMO | η |
---|---|---|---|---|---|
CTAC | - | −803.904 | 0.022 | 0.084 | 0.031 |
Se | −12,795.691 | −0.005 | −0.000 | 0.003 | |
Se | - | −11,991.801 | −0.141 | −0.042 | 0.050 |
Preparation | Sample | Concentration, mmol/L | CFU, ×103 in 1 mL | ||
---|---|---|---|---|---|
Escherichia coli | Micrococcus luteus | Mucor | |||
Ascorbic acid | 1 | 43.7500 | 0.26 ± 0.03 | 0.24 ± 0.05 | 0.11 ± 0.02 |
2 | 4.3750 | 0.23 ± 0.04 | 0.26 ± 0.02 | 0.12 ± 0.02 | |
3 | 0.4375 | 0.23 ± 0.03 | 0.23 ± 0.04 | 0.11 ± 0.01 | |
4 | 0.0438 | 0.25 ± 0.02 | 0.26 ± 0.03 | 0.14 ± 0.01 | |
5 | 0.0044 | 0.27 ± 0.02 | 0.25 ± 0.03 | 0.13 ± 0.02 | |
Selenic acid | 1 | 43.9300 | 0.24 ± 0.03 | 0.25 ± 0.02 | 0.12 ± 0.03 |
2 | 4.3930 | 0.25 ± 0.04 | 0.23 ± 0.05 | 0.13 ± 0.01 | |
3 | 0.4393 | 0.25 ± 0.02 | 0.22 ± 0.04 | 0.11 ± 0.02 | |
4 | 0.0439 | 0.24 ± 0.04 | 0.24 ± 0.05 | 0.12 ± 0.02 | |
5 | 0.0044 | 0.26 ± 0.02 | 0.27 ± 0.02 | 0.13 ± 0.01 | |
CTAC | 1 | 832.2100 | 0 | 0 | 0 |
2 | 83.2210 | 0 | 0 | 0 | |
3 | 8.3220 | 0 | 0 | 0.02 ± 0.01 | |
4 | 0.8320 | 0.08 ± 0.03 | 0.03 ± 0.01 | 0.02 ± 0.01 | |
5 | 0.0832 | 0.11 ± 0.01 | 0.04 ± 0.01 | 0.05 ± 0.02 | |
Se NPs-CTAC | 1 | 19.3900 | 0 | 0 | 0 |
2 | 1.9390 | 0 | 0 | 0 | |
3 | 0.1940 | 0 | 0 | 0 | |
4 | 0.0194 | 0.03 ± 0.01 | 0 | 0.02 ± 0.01 | |
5 | 0.0019 | 0.04 ± 0.01 | 0.03 ± 0.01 | 0.03 ± 0.01 |
Preparation | Sample | Concentration, mmol/L | Inhibition Zone, mm | |
---|---|---|---|---|
Escherichia coli | Micrococcus luteus | |||
Ascorbic acid | 1 | 43.7500 | 0 | 0 |
2 | 4.3750 | 0 | 0 | |
3 | 0.4375 | 0 | 0 | |
4 | 0.0438 | 0 | 0 | |
5 | 0.0044 | 0 | 0 | |
Selenic acid | 1 | 43.9300 | 0 | 0 |
2 | 4.3930 | 0 | 0 | |
3 | 0.4393 | 0 | 0 | |
4 | 0.0439 | 0 | 0 | |
5 | 0.0044 | 0 | 0 | |
CTAC | 1 | 832.2100 | 26 ± 3 | 31 ± 4 |
2 | 83.2210 | 17 ± 4 | 20 ± 2 | |
3 | 8.3220 | 12 ± 2 | 17 ± 4 | |
4 | 0.8320 | 0 | 0 | |
5 | 0.0832 | 0 | 0 | |
Se NPs-CTAC | 1 | 19.3900 | 33 ± 2 | 31 ± 3 |
2 | 1.9390 | 21 ± 5 | 26 ± 2 | |
3 | 0.1940 | 15 ± 2 | 22 ± 3 | |
4 | 0.0194 | 11 ± 2 | 20 ± 2 | |
5 | 0.0019 | 12 ± 4 | 18 ± 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blinova, A.; Blinov, A.; Kravtsov, A.; Nagdalian, A.; Rekhman, Z.; Gvozdenko, A.; Kolodkin, M.; Filippov, D.; Askerova, A.; Golik, A.; et al. Synthesis, Characterization and Potential Antimicrobial Activity of Selenium Nanoparticles Stabilized with Cetyltrimethylammonium Chloride. Nanomaterials 2023, 13, 3128. https://doi.org/10.3390/nano13243128
Blinova A, Blinov A, Kravtsov A, Nagdalian A, Rekhman Z, Gvozdenko A, Kolodkin M, Filippov D, Askerova A, Golik A, et al. Synthesis, Characterization and Potential Antimicrobial Activity of Selenium Nanoparticles Stabilized with Cetyltrimethylammonium Chloride. Nanomaterials. 2023; 13(24):3128. https://doi.org/10.3390/nano13243128
Chicago/Turabian StyleBlinova, Anastasiya, Andrey Blinov, Alexander Kravtsov, Andrey Nagdalian, Zafar Rekhman, Alexey Gvozdenko, Maksim Kolodkin, Dionis Filippov, Alina Askerova, Alexey Golik, and et al. 2023. "Synthesis, Characterization and Potential Antimicrobial Activity of Selenium Nanoparticles Stabilized with Cetyltrimethylammonium Chloride" Nanomaterials 13, no. 24: 3128. https://doi.org/10.3390/nano13243128
APA StyleBlinova, A., Blinov, A., Kravtsov, A., Nagdalian, A., Rekhman, Z., Gvozdenko, A., Kolodkin, M., Filippov, D., Askerova, A., Golik, A., Serov, A., Shariati, M. A., Alharbi, N. S., Kadaikunnan, S., & Thiruvengadam, M. (2023). Synthesis, Characterization and Potential Antimicrobial Activity of Selenium Nanoparticles Stabilized with Cetyltrimethylammonium Chloride. Nanomaterials, 13(24), 3128. https://doi.org/10.3390/nano13243128