Deep Learning-Based Metasurface Design for Smart Cooling of Spacecraft
Abstract
:1. Introduction
2. Materials and Methods
2.1. Structure and Data Generation
2.2. Inverse Problem
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abid, M.M. Spacecraft Sensors; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Kim, H.; Cheung, K.; Auyeung, R.C.; Wilson, D.E.; Charipar, K.M.; Piqué, A.; Charipar, N.A. VO2-based switchable radiator for spacecraft thermal control. Sci. Rep. 2019, 9, 11329. [Google Scholar] [CrossRef]
- Clawson, J.F.; Tsuyuki, G.; Anderson, B.; Justus, C.; Batts, W.; Ferguson, D.; Gilmore, D. Spacecraft thermal environments. Spacecr. Therm. Control Handb. 2002, 1, 21–69. [Google Scholar]
- Morsy, A.M.; Barako, M.T.; Jankovic, V.; Wheeler, V.D.; Knight, M.W.; Papadakis, G.T.; Sweatlock, L.A.; Hon, P.W.; Povinelli, M.L. Experimental demonstration of dynamic thermal regulation using vanadium dioxide thin films. Sci. Rep. 2020, 10, 13964. [Google Scholar] [CrossRef]
- Wu, S.H.; Chen, M.; Barako, M.T.; Jankovic, V.; Hon, P.W.; Sweatlock, L.A.; Povinelli, M.L. Thermal homeostasis using microstructured phase-change materials. Optica 2017, 4, 1390–1396. [Google Scholar] [CrossRef]
- Ke, Y.; Wang, S.; Liu, G.; Li, M.; White, T.J.; Long, Y. Vanadium dioxide: The multistimuli responsive material and its applications. Small 2018, 14, 1802025. [Google Scholar] [CrossRef]
- Ueno, A.; Kim, J.; Nagano, H. Thermophysical properties of metal-insulator transition materials during phase transition for thermal control devices. Int. J. Heat Mass Transf. 2021, 166, 120631. [Google Scholar] [CrossRef]
- He, Q.; Sun, S.; Zhou, L. Tunable/Reconfigurable Metasurfaces: Physics and Applications. Research 2019, 2019, 1849272. [Google Scholar] [CrossRef]
- Hoang, M.T.; Yang, Y.; Tuten, B.; Wang, H. Are metal halide perovskite solar cells ready for space applications? J. Phys. Chem. Lett. 2022, 13, 2908–2920. [Google Scholar] [CrossRef]
- Jakši’c, Z.; Vuković, S.; Matovic, J.; Tanasković, D. Negative refractive index metasurfaces for enhanced biosensing. Materials 2011, 4, 1–36. [Google Scholar] [CrossRef]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect metamaterial absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef]
- Chen, C.; Huang, Y.; Wu, K.; Bifano, T.G.; Anderson, S.W.; Zhao, X.; Zhang, X. Polarization insensitive, metamaterial absorber- enhanced long-wave infrared detector. Opt. Express 2020, 28, 28843–28857. [Google Scholar] [CrossRef]
- Zhang, Y.; Miao, L.; Guo, S.; Huang, Z.; Cao, Z.; He, Y.; Wei, J.; Li, C.; Jiang, J. A broadband tunable frequency selective surface absorber for oblique incidence applications. J. Phys. D Appl. Phys. 2019, 53, 055105. [Google Scholar] [CrossRef]
- Mirshafieyan, S.S.; Gregory, D.A. Electrically tunable perfect light absorbers as color filters and modulators. Sci. Rep. 2018, 8, 2635. [Google Scholar] [CrossRef]
- Bianchi, V.; Carey, T.; Viti, L.; Li, L.; Linfield, E.H.; Davies, A.G.; Tredicucci, A.; Yoon, D.; Karagiannidis, P.G.; Lombardi, L.; et al. Terahertz saturable absorbers from liquid phase exfoliation of graphite. Nat. Commun. 2017, 8, 15763. [Google Scholar] [CrossRef]
- Malkiel, I.; Mrejen, M.; Nagler, A.; Arieli, U.; Wolf, L.; Suchowski, H. Plasmonic nanostructure design and characterization via deep learning. Light Sci. Appl. 2018, 7, 60. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, Y.; Wang, Z.; Wu, Y.; Zhao, Y.; Liu, L.; Ji, G. Bioinspired moth-eye multi-mechanism composite ultra-wideband microwave absorber based on the graphite powder. Carbon 2023, 201, 542–548. [Google Scholar] [CrossRef]
- Sun, K.; Riedel, C.A.; Wang, Y.; Urbani, A.; Simeoni, M.; Mengali, S.; Zalkovskij, M.; Bilenberg, B.; De Groot, C.; Muskens, O.L. Metasurface optical solar reflectors using AZO transparent conducting oxides for radiative cooling of spacecraft. ACS Photonics 2018, 5, 495–501. [Google Scholar] [CrossRef]
- Ito, K.; Watari, T.; Nishikawa, K.; Yoshimoto, H.; Iizuka, H. Inverting the thermal radiative contrast of vanadium dioxide by metasurfaces based on localized gap-plasmons. APL Photonics 2018, 3, 086101. [Google Scholar] [CrossRef]
- Taylor, S.; Yang, Y.; Wang, L. Vanadium dioxide based Fabry-Perot emitter for dynamic radiative cooling applications. J. Quant. Spectrosc. Radiat. Transf. 2017, 197, 76–83. [Google Scholar] [CrossRef]
- Taylor, S.; Long, L.; McBurney, R.; Sabbaghi, P.; Chao, J.; Wang, L. Spectrally-selective vanadium dioxide based tunable metafilm emitter for dynamic radiative cooling. Sol. Energy Mater. Sol. Cells 2020, 217, 110739. [Google Scholar] [CrossRef]
- Ono, M.; Chen, K.; Li, W.; Fan, S. Self-adaptive radiative cooling based on phase change materials. Opt. Express 2018, 26, A777–A787. [Google Scholar] [CrossRef]
- Zhang, W.W.; Qi, H.; Sun, A.T.; Ren, Y.T.; Shi, J.W. Periodic trapezoidal VO2-Ge multilayer absorber for dynamic radiative cooling. Opt. Express 2020, 28, 20609–20623. [Google Scholar] [CrossRef]
- Sun, K.; Riedel, C.A.; Urbani, A.; Simeoni, M.; Mengali, S.; Zalkovskij, M.; Bilenberg, B.; De Groot, C.; Muskens, O.L. VO2 thermochromic metamaterial-based smart optical solar reflector. ACS Photonics 2018, 5, 2280–2286. [Google Scholar] [CrossRef]
- Sun, K.; Xiao, W.; Wheeler, C.; Simeoni, M.; Urbani, A.; Gaspari, M.; Mengali, S.; de Groot, C.; Muskens, O.L. VO2 metasurface smart thermal emitter with high visual transparency for passive radiative cooling regulation in space and terrestrial applications. Nanophotonics 2022, 11, 4101–4114. [Google Scholar] [CrossRef]
- Huff, M. Recent advances in reactive ion etching and applications of high-aspect-ratio microfabrication. Micromachines 2021, 12, 991. [Google Scholar] [CrossRef]
- Deng, R.; Li, M.; Muneer, B.; Zhu, Q.; Shi, Z.; Song, L.; Zhang, T. Theoretical analysis and design of ultrathin broadband optically transparent microwave metamaterial absorbers. Materials 2018, 11, 107. [Google Scholar] [CrossRef]
- Zheng, C.; Li, H.; Zang, H.; Yao, J. Terahertz polarization detection based on the mode analysis of longitudinally polarized vortices. Opt. Laser Technol. 2024, 170, 110210. [Google Scholar] [CrossRef]
- Duan, G.; Schalch, J.; Zhao, X.; Li, A.; Chen, C.; Averitt, R.D.; Zhang, X. A survey of theoretical models for terahertz electromagnetic metamaterial absorbers. Sens. Actuators A Phys. 2019, 287, 21–28. [Google Scholar] [CrossRef]
- Li, L.; Ruan, H.; Liu, C.; Li, Y.; Shuang, Y.; Alù, A.; Qiu, C.W.; Cui, T.J. Machine-learning reprogrammable metasurface imager. Nat. Commun. 2019, 10, 1082. [Google Scholar] [CrossRef]
- Qian, C.; Zheng, B.; Shen, Y.; Jing, L.; Li, E.; Shen, L.; Chen, H. Deep-learning-enabled self-adaptive microwave cloak without human intervention. Nat. Photonics 2020, 14, 383–390. [Google Scholar] [CrossRef]
- Lemic, F.; Abadal, S.; Han, C.; Marquez-Barja, J.; Alarcón, E.; Famaey, J. Localization in Terahertz-Operating Energy Harvesting Software-Defined Metamaterials. arXiv 2020, arXiv:2011.02335. [Google Scholar]
- Hodge, J.A.; Mishra, K.V.; Zaghloul, A.I. Deep inverse design of reconfigurable metasurfaces for future communications. arXiv 2021, arXiv:2101.09131. [Google Scholar]
- An, S.; Fowler, C.; Zheng, B.; Shalaginov, M.Y.; Tang, H.; Li, H.; Zhou, L.; Ding, J.; Agarwal, A.M.; Rivero-Baleine, C.; et al. A deep learning approach for objective-driven all-dielectric metasurface design. ACS Photonics 2019, 6, 3196–3207. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, C.; Wan, X.; Zhang, L.; Liu, S.; Yang, Y.; Cui, T.J. Machine-learning designs of anisotropic digital coding metasurfaces. Adv. Theory Simul. 2019, 2, 1800132. [Google Scholar] [CrossRef]
- Sajedian, I.; Kim, J.; Rho, J. Finding the optical properties of plasmonic structures by image processing using a combination of convolutional neural networks and recurrent neural networks. Microsyst. Nanoeng. 2019, 5, 27. [Google Scholar] [CrossRef]
- Lin, R.; Zhai, Y.; Xiong, C.; Li, X. Inverse design of plasmonic metasurfaces by convolutional neural network. Opt. Lett. 2020, 45, 1362–1365. [Google Scholar] [CrossRef]
- Nadell, C.C.; Huang, B.; Malof, J.M.; Padilla, W.J. Deep learning for accelerated all-dielectric metasurface design. Opt. Express 2019, 27, 27523–27535. [Google Scholar] [CrossRef]
- Liu, Z.; Zhu, D.; Rodrigues, S.P.; Lee, K.T.; Cai, W. Generative model for the inverse design of metasurfaces. Nano Lett. 2018, 18, 6570–6576. [Google Scholar] [CrossRef]
- Tanriover, I.; Hadibrata, W.; Aydin, K. Physics-Based Approach for a Neural Networks Enabled Design of All-Dielectric Metasurfaces. ACS Photonics 2020, 7, 1957–1964. [Google Scholar] [CrossRef]
- Kiarashinejad, Y.; Abdollahramezani, S.; Zandehshahvar, M.; Hemmatyar, O.; Adibi, A. Deep learning reveals underlying physics of light–matter interactions in nanophotonic devices. Adv. Theory Simul. 2019, 2, 1900088. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, H.; Zhao, S. Auto-encoder based dimensionality reduction. Neurocomputing 2016, 184, 232–242. [Google Scholar] [CrossRef]
- Foo, S. Liquid-crystal reconfigurable metasurface reflectors. In Proceedings of the 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, CA, USA, 9–14 July 2017; pp. 2069–2070. [Google Scholar]
- Hooke, R.; Jeeves, T.A. Direct Search Solution of Numerical and Statistical Problems. J. ACM (JACM) 1961, 8, 212–229. [Google Scholar] [CrossRef]
- Wang, X.; Jin, H.; Wang, B.; Ling, C.; Yang, J.; Li, D.; Li, J. Thermochromic VO2 based sandwich structure Ag/Al2O3/VO2 with low solar absorption and tunable emittance for spacecraft. J. Appl. Phys. 2022, 131, 135301. [Google Scholar] [CrossRef]
- Argyropoulos, C.; Le, K.Q.; Mattiucci, N.; D’Aguanno, G.; Alu, A. Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces. Phys. Rev. B 2013, 87, 205112. [Google Scholar] [CrossRef]
- Kats, M.A.; Capasso, F. Optical absorbers based on strong interference in ultra-thin films. Laser Photonics Rev. 2016, 10, 735–749. [Google Scholar] [CrossRef]
- Hendaoui, A.; Émond, N.; Chaker, M.; Haddad, É. Highly tunable-emittance radiator based on semiconductor-metal transition of VO2 thin films. Appl. Phys. Lett. 2013, 102, 061107. [Google Scholar] [CrossRef]
- Gu, J.; Wei, H.; Ren, F.; Guan, H.; Liang, S.; Geng, C.; Li, L.; Zhao, J.; Dou, S.; Li, Y. VO2-based infrared radiation regulator with excellent dynamic thermal management performance. ACS Appl. Mater. Interfaces 2022, 14, 2683–2690. [Google Scholar] [CrossRef]
- Numan, N.; Mabakachaba, B.; Simo, A.; Nuru, Z.; Maaza, M. VO2-based active tunable emittance thermochromic flexible coatings. JOSA A 2020, 37, C45–C49. [Google Scholar] [CrossRef]
- Du, Z.; Li, M.; Xu, S.; Li, K.; Zou, F.; Zhang, R.; Li, G. VO2-based intelligent thermal control coating for spacecraft by regulating infrared emittance. J. Alloys Compd. 2022, 895, 162679. [Google Scholar] [CrossRef]
- Zhu, Z.; Evans, P.G.; Haglund Jr, R.F.; Valentine, J.G. Dynamically reconfigurable metadevice employing nanostructured phase-change materials. Nano Lett. 2017, 17, 4881–4885. [Google Scholar] [CrossRef]
- Dooling, D. Material Selection Guidelines to Limit Atomic Oxygen Effects on Spacecraft Surfaces; Marshall Space Flight Center: Huntsville, AL, USA, 1999.
- Reddy, M.R. Effect of low earth orbit atomic oxygen on spacecraft materials. J. Mater. Sci. 1995, 30, 281–307. [Google Scholar] [CrossRef]
- Marshall, K.; Breuch, R. Optical solar reflector-A highly stable, low alpha sub S/epsilon spacecraft thermal control surface. J. Spacecr. Rocket. 1968, 5, 1051–1056. [Google Scholar] [CrossRef]
- Multiphysics, C. Introduction to COMSOL Multiphysics®; COMSOL Multiphysics: Burlington, MA, USA, 1998; p. 32. [Google Scholar]
- Wan, C.; Zhang, Z.; Woolf, D.; Hessel, C.M.; Rensberg, J.; Hensley, J.M.; Xiao, Y.; Shahsafi, A.; Salman, J.; Richter, S.; et al. On the optical properties of thin-film vanadium dioxide from the visible to the far infrared. Ann. Der Phys. 2019, 531, 1900188. [Google Scholar] [CrossRef]
- Wu, S.R.; Lai, K.L.; Wang, C.M. Passive temperature control based on a phase change metasurface. Sci. Rep. 2018, 8, 7684. [Google Scholar] [CrossRef]
- Bottou, L. Stochastic gradient descent tricks. In Neural Networks: Tricks of the Trade, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 421–436. [Google Scholar]
- Hegde, R.S. Photonics inverse design: Pairing deep neural networks with evolutionary algorithms. IEEE J. Sel. Top. Quantum Electron. 2019, 26, 1–8. [Google Scholar] [CrossRef]
- Jing, G.; Wang, P.; Wu, H.; Ren, J.; Xie, Z.; Liu, J.; Ye, H.; Li, Y.; Fan, D.; Chen, S. Neural network-based surrogate model for inverse design of metasurfaces. Photonics Res. 2022, 10, 1462–1471. [Google Scholar] [CrossRef]
- Lin, H.; Hou, J.; Wang, Y.; Tang, R.; Shi, X.; Tian, Y.; Xu, W. Machine-learning-assisted inverse design of scattering enhanced metasurface. Opt. Express 2022, 30, 3076–3088. [Google Scholar] [CrossRef]
- Kudyshev, Z.A.; Kildishev, A.V.; Shalaev, V.M.; Boltasseva, A. Machine learning–assisted global optimization of photonic devices. Nanophotonics 2020, 10, 371–383. [Google Scholar] [CrossRef]
- Yan, R.; Wang, T.; Jiang, X.; Huang, X.; Wang, L.; Yue, X.; Wang, H.; Wang, Y. Efficient inverse design and spectrum prediction for nanophotonic devices based on deep recurrent neural networks. Nanotechnology 2021, 32, 335201. [Google Scholar] [CrossRef]
- Mandal, A.; Cui, Y.; McRae, L.; Gholipour, B. Reconfigurable chalcogenide phase change metamaterials: A material, device, and fabrication perspective. J. Phys. Photonics 2021, 3, 022005. [Google Scholar] [CrossRef]
- Wu, Q.; Li, X.; Wang, W.; Dong, Q.; Xiao, Y.; Cao, X.; Wang, L.; Gao, L. Comparison of different neural network architectures for plasmonic inverse design. ACS Omega 2021, 6, 23076–23082. [Google Scholar] [CrossRef]
- Liu, D.; Tan, Y.; Khoram, E.; Yu, Z. Training deep neural networks for the inverse design of nanophotonic structures. Acs Photonics 2018, 5, 1365–1369. [Google Scholar] [CrossRef]
- Repän, T.; Venkitakrishnan, R.; Rockstuhl, C. Artificial neural networks used to retrieve effective properties of metamaterials. Opt. Express 2021, 29, 36072–36085. [Google Scholar] [CrossRef]
- Roberts, N.B.; Keshavarz Hedayati, M. A deep learning approach to the forward prediction and inverse design of plasmonic metasurface structural color. Appl. Phys. Lett. 2021, 119, 061101. [Google Scholar] [CrossRef]
- Unni, R.; Yao, K.; Zheng, Y. Deep convolutional mixture density network for inverse design of layered photonic structures. ACS Photonics 2020, 7, 2703–2712. [Google Scholar] [CrossRef]
- Ma, W.; Liu, Z.; Kudyshev, Z.A.; Boltasseva, A.; Cai, W.; Liu, Y. Deep learning for the design of photonic structures. Nat. Photonics 2021, 15, 77–90. [Google Scholar] [CrossRef]
- Mall, A.; Patil, A.; Sethi, A.; Kumar, A. A cyclical deep learning based framework for simultaneous inverse and forward design of 512 nanophotonic metasurfaces. Sci. Rep. 2020, 10, 19427. [Google Scholar] [CrossRef]
- Ma, W.; Cheng, F.; Xu, Y.; Wen, Q.; Liu, Y. Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy. Adv. Mater. 2019, 31, 1901111. [Google Scholar] [CrossRef]
- Blank, J.; Deb, K. Pymoo: Multi-Objective Optimization in Python. IEEE Access 2020, 8, 89497–89509. [Google Scholar] [CrossRef]
- Sharma, N.; Bar-David, J.; Mazurski, N.; Levy, U. Metasurfaces for enhancing light absorption in thermoelectric photodetectors. ACS Photonics 2020, 7, 2468–2473. [Google Scholar] [CrossRef]
VO2 Structure | Substrate | Reflector | Operating Range (µm) | Ref. |
---|---|---|---|---|
Patches | Si | Tungsten (W) | 4–14 | [19] |
Thin film | N/A | Al | 5–25 | [20] |
Thin film | Si | Al | 5–20 | [21] |
Thin film | BaF2 | Au | 5–25 | [2] |
Thin film | MgF2 | W | 4–14 | [22] |
Trapezoidal Multi-layer | MgF2 + Ge | Ti | 5–14 | [23] |
Cones | Si | Au | 2.5–30 | [5] |
Thin film | Si | Au | 5–30 | [4] |
Patches | SiO2 | Al | 2.5–20 | [24] |
VO2 Structure | Substrate | Reflector | Operating Range (µm) | Δε | Ref. | ||
---|---|---|---|---|---|---|---|
Thin film (30 nm) | SiO2 | Au | 2.5–25 | 0.22 | 0.71 | 0.49 | [48] |
Thin film (40 nm) | BaF2 | Au | 5–25 | 0.16 | 0.51 | 0.35 | [2] |
Patches (40 nm) | SiO2 | AZO | 2.5–20 | 0.54 | 0.81 | 0.26 | [25] |
Thin film (50 nm) | Al2O3 | Ag | 5–15 | 0.34 | 0.87 | 0.53 | [45] |
Thin film (50 nm) | HfO2 | Al | 2.5–25 | 0.23 | 0.74 | 0.51 | [49] |
Thin film (60 nm) | Si | Al | 5–25 | 0.14 | 0.6 | 0.45 | [20] |
Thin film (62 nm) | Si | Au | 2–30 | 0.22 | 0.46 | 0.24 | [4] |
Thin film (263 nm) | SiO2 | Al | 5–25 | 0.18 | 0.57 | 0.39 | [50] |
Thin film (360 nm) | SiO2 | Ag | 5–20 | 0.07 | 0.59 | 0.52 | [51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Negm, A.; Bakr, M.H.; Howlader, M.M.R.; Ali, S.M. Deep Learning-Based Metasurface Design for Smart Cooling of Spacecraft. Nanomaterials 2023, 13, 3073. https://doi.org/10.3390/nano13233073
Negm A, Bakr MH, Howlader MMR, Ali SM. Deep Learning-Based Metasurface Design for Smart Cooling of Spacecraft. Nanomaterials. 2023; 13(23):3073. https://doi.org/10.3390/nano13233073
Chicago/Turabian StyleNegm, Ayman, Mohamed H. Bakr, Matiar M. R. Howlader, and Shirook M. Ali. 2023. "Deep Learning-Based Metasurface Design for Smart Cooling of Spacecraft" Nanomaterials 13, no. 23: 3073. https://doi.org/10.3390/nano13233073
APA StyleNegm, A., Bakr, M. H., Howlader, M. M. R., & Ali, S. M. (2023). Deep Learning-Based Metasurface Design for Smart Cooling of Spacecraft. Nanomaterials, 13(23), 3073. https://doi.org/10.3390/nano13233073