Development of Processes and Catalysts for Biomass to Hydrocarbons at Moderate Conditions: A Comprehensive Review
Abstract
:1. Introduction
2. Properties of Bio-Crude Oil
3. Lignin-Derived Aromatic Oxygenates
3.1. Phenol and Alkylated Phenols
3.2. Guaiacol and Anisole
3.3. Upgrading Processes of Bio-Crude Oil
4. Physical Upgrading Processes of Bio-Crude Oil
4.1. Solvent Addition
4.2. Emulsion
4.3. Supercritical Fluids
5. Chemical Processes of Bio-Crude Oil Upgrading
5.1. Hydrotreatment
5.2. Steam Reforming
5.3. Catalytic Hydrocracking and Cracking
5.4. Novel Approaches for Bio-Crude Oil Upgrading
6. Catalysts Designed for Hydrodeoxygenation of Lignin-Derived Oxygenates
6.1. Designed Catalysts for Lignin-Derived Oxygenates
6.2. Sulfided Catalysts
7. Transition Metal Catalysts (Sulfur-Free Catalyst)
7.1. Monometallic Catalysts
7.2. Bimetallic Catalysts
8. Transition Metal-Based Catalysts, Oxides, Phosphides, Carbides, and Nitrides
8.1. Metal-Oxide Catalysts
8.2. Metal-Phosphide Catalyst
8.3. Metal-Carbide Catalyst
8.4. Metal-Nitride
9. Coke Formation
10. Catalyst Regeneration
11. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rogers, K.A.; Zheng, Y. Selective Deoxygenation of Biomass-Derived Bio-Oils within Hydrogen-Modest Environments: A Review and New Insights. ChemSusChem 2016, 9, 1750–1772. [Google Scholar] [CrossRef] [PubMed]
- Shomal, R.; Ogubadejo, B.; Shittu, T.; Mahmoud, E.; Du, W.; Al-Zuhair, S. Advances in Enzyme and Ionic Liquid Immobilization for Enhanced in MOFs for Biodiesel Production. Molecules 2021, 26, 3512. [Google Scholar] [CrossRef] [PubMed]
- Ambat, I.; Srivastava, V.; Sillanpää, M. Recent Advancement in Biodiesel Production Methodologies Using Various Feedstock: A Review. Renew. Sustain. Energy Rev. 2018, 90, 356–369. [Google Scholar] [CrossRef]
- Mohr, S.H.; Wang, J.; Ellem, G.; Ward, J.; Giurco, D. Projection of World Fossil Fuels by Country. Fuel 2015, 141, 120–135. [Google Scholar] [CrossRef]
- Mishra, V.K.; Goswami, R. A Review of Production, Properties and Advantages of Biodiesel. Biofuels 2018, 9, 273–289. [Google Scholar] [CrossRef]
- Jeevahan, J.; Mageshwaran, G.; Joseph, G.B.; Raj, R.B.D.; Kannan, R.T. Various Strategies for Reducing Nox Emissions of Biodiesel Fuel Used in Conventional Diesel Engines: A Review. Chem. Eng. Commun. 2017, 204, 1202–1223. [Google Scholar] [CrossRef]
- Shomal, R.; Du, W.; Al-Zuhair, S. Immobilization of Lipase on Metal-Organic Frameworks for Biodiesel Production. J. Environ. Chem. Eng. 2022, 10, 107265. [Google Scholar] [CrossRef]
- Shomal, R.; Hisham, H.; Mlhem, A.; Hassan, R.; Al-Zuhair, S. Simultaneous Extraction–Reaction Process for Biodiesel Production from Microalgae. Energy Rep. 2019, 5, 37–40. [Google Scholar] [CrossRef]
- Lahijani, P.; Mohammadi, M.; Mohamed, A.R.; Ismail, F.; Lee, K.T.; Amini, G. Upgrading Biomass-Derived Pyrolysis Bio-Oil to Bio-Jet Fuel through Catalytic Cracking and Hydrodeoxygenation: A Review of Recent Progress. Energy Convers. Manag. 2022, 268, 115956. [Google Scholar] [CrossRef]
- Staples, M.D.; Malina, R.; Suresh, P.; Hileman, J.I.; Barrett, S.R.H. Aviation CO2 Emissions Reductions from the Use of Alternative Jet Fuels. Energy Policy 2018, 114, 342–354. [Google Scholar] [CrossRef]
- Neves, R.C.; Klein, B.C.; da Silva, R.J.; Rezende, M.C.A.F.; Funke, A.; Olivarez-Gómez, E.; Bonomi, A.; Maciel-Filho, R. A Vision on Biomass-to-Liquids (BTL) Thermochemical Routes in Integrated Sugarcane Biorefineries for Biojet Fuel Production. Renew. Sustain. Energy Rev. 2020, 119, 109607. [Google Scholar] [CrossRef]
- Wang, H.; Li, G.; Rogers, K.; Lin, H.; Zheng, Y.; Ng, S. Hydrotreating of Waste Cooking Oil over Supported CoMoS Catalyst—Catalyst Deactivation Mechanism Study. Mol. Catal. 2017, 443, 228–240. [Google Scholar] [CrossRef]
- Wang, H.; Lin, H.; Feng, P.; Han, X.; Zheng, Y. Integration of Catalytic Cracking and Hydrotreating Technology for Triglyceride Deoxygenation. Catal. Today 2017, 291, 172–179. [Google Scholar] [CrossRef]
- Gollakota, A.R.K.; Reddy, M.; Subramanyam, M.D.; Kishore, N. A Review on the Upgradation Techniques of Pyrolysis Oil. Renew. Sustain. Energy Rev. 2016, 58, 1543–1568. [Google Scholar] [CrossRef]
- Zacher, A.H.; Olarte, M.V.; Santosa, D.M.; Elliott, D.C.; Jones, S.B. A Review and Perspective of Recent Bio-Oil Hydrotreating Research. Green Chem. 2014, 16, 491–515. [Google Scholar] [CrossRef]
- Luo, Z.; Zheng, Z.; Wang, Y.; Sun, G.; Jiang, H.; Zhao, C. Hydrothermally Stable Ru/HZSM-5-Catalyzed Selective Hydrogenolysis of Lignin-Derived Substituted Phenols to Bio-Arenes in Water. Green Chem. 2016, 18, 5845–5858. [Google Scholar] [CrossRef]
- Mohamed, A.R.; Mohammadi, M. 10 - Upgrading Pyrolysis-Derived Bio-Oils via Catalytic Hydrodeoxygenation: An Overview of Advanced Nanocatalysts. In New Dimensions in Production and Utilization of Hydrogen; Nanda, S., Vo, D.-V.N., Nguyen-Tri, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 241–272. ISBN 978-0-12-819553-6. [Google Scholar]
- Wang, H.; Male, J.; Wang, Y. Recent Advances in Hydrotreating of Pyrolysis Bio-Oil and Its Oxygen-Containing Model Compounds. ACS Catal. 2013, 3, 1047–1070. [Google Scholar] [CrossRef]
- Wang, W.; Yang, Y.; Luo, H.; Peng, H.; Wang, F. Effect of La on Ni–W–B Amorphous Catalysts in Hydrodeoxygenation of Phenol. Ind. Eng. Chem. Res. 2011, 50, 10936–10942. [Google Scholar] [CrossRef]
- Luo, Y.-R. Comprehensive Handbook of Chemical Bond Energies; CRC Press: Boca Raton, FL, USA, 2007; ISBN 978-1-4200-0728-2. [Google Scholar]
- Feng, P.; Wang, H.; Lin, H.; Zheng, Y. Selective Production of Guaiacol from Black Liquor: Effect of Solvents. Carbon Resour. Convers. 2019, 2, 1–12. [Google Scholar] [CrossRef]
- Shafaghat, H.; Rezaei, P.S.; Daud, W.M.A.W. Effective Parameters on Selective Catalytic Hydrodeoxygenation of Phenolic Compounds of Pyrolysis Bio-Oil to High-Value Hydrocarbons. RSC Adv. 2015, 5, 103999–104042. [Google Scholar] [CrossRef]
- Bu, Q.; Lei, H.; Zacher, A.H.; Wang, L.; Ren, S.; Liang, J.; Wei, Y.; Liu, Y.; Tang, J.; Zhang, Q.; et al. A Review of Catalytic Hydrodeoxygenation of Lignin-Derived Phenols from Biomass Pyrolysis. Bioresour. Technol. 2012, 124, 470–477. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, Q.; Zhang, Q.; Liu, Q.; Chen, L.; Li, Y.; Wang, C.; Ma, L. Aromatic Fuel Production from Phenolics by Catalytic Hydrodeoxygenation over Novel Mo-Based Catalyst. Energy Procedia 2019, 158, 984–990. [Google Scholar] [CrossRef]
- Chimentão, R.J.; Oliva, H.; Belmar, J.; Morales, K.; Mäki-Arvela, P.; Wärnå, J.; Murzin, D.Y.; Fierro, J.L.G.; Llorca, J.; Ruiz, D. Selective Hydrodeoxygenation of Biomass Derived 5-Hydroxymethylfurfural over Silica Supported Iridium Catalysts. Appl. Catal. B Environ. 2019, 241, 270–283. [Google Scholar] [CrossRef]
- Pourzolfaghar, H.; Abnisa, F.; Wan Daud, W.M.A.; Aroua, M.K. Atmospheric Hydrodeoxygenation of Bio-Oil Oxygenated Model Compounds: A Review. J. Anal. Appl. Pyrolysis 2018, 133, 117–127. [Google Scholar] [CrossRef]
- Demirbas, A. Competitive Liquid Biofuels from Biomass. Appl. Energy 2011, 88, 17–28. [Google Scholar] [CrossRef]
- Brown, R.C. Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power; John Wiley & Sons: Hoboken, NJ, USA, 2019; ISBN 978-1-119-41757-6. [Google Scholar]
- Bridgwater, A.V. Review of Fast Pyrolysis of Biomass and Product Upgrading. Biomass Bioenergy 2012, 38, 68–94. [Google Scholar] [CrossRef]
- Dabros, T.M.H.; Stummann, M.Z.; Høj, M.; Jensen, P.A.; Grunwaldt, J.-D.; Gabrielsen, J.; Mortensen, P.M.; Jensen, A.D. Transportation Fuels from Biomass Fast Pyrolysis, Catalytic Hydrodeoxygenation, and Catalytic Fast Hydropyrolysis. Prog. Energy Combust. Sci. 2018, 68, 268–309. [Google Scholar] [CrossRef]
- Lachos-Perez, D.; Martins-Vieira, J.C.; Missau, J.; Anshu, K.; Siakpebru, O.K.; Thengane, S.K.; Morais, A.R.C.; Tanabe, E.H.; Bertuol, D.A. Review on Biomass Pyrolysis with a Focus on Bio-Oil Upgrading Techniques. Analytica 2023, 4, 182–205. [Google Scholar] [CrossRef]
- Wang, W.; Lemaire, R.; Bensakhria, A.; Luart, D. Review on the Catalytic Effects of Alkali and Alkaline Earth Metals (AAEMs) Including Sodium, Potassium, Calcium and Magnesium on the Pyrolysis of Lignocellulosic Biomass and on the Co-Pyrolysis of Coal with Biomass. J. Anal. Appl. Pyrolysis 2022, 163, 105479. [Google Scholar] [CrossRef]
- Valle, B.; Remiro, A.; García-Gómez, N.; Gayubo, A.G.; Bilbao, J. Recent Research Progress on Bio-Oil Conversion into Bio-Fuels and Raw Chemicals: A Review. J. Chem. Technol. Biotechnol. 2019, 94, 670–689. [Google Scholar] [CrossRef]
- Jo, H.; Verma, D.; Kim, J. Excellent Aging Stability of Upgraded Fast Pyrolysis Bio-Oil in Supercritical Ethanol. Fuel 2018, 232, 610–619. [Google Scholar] [CrossRef]
- Copyrignt. In Biomass Supply Chains for Bioenergy and Biorefining; Holm-Nielsen, J.B.; Ehimen, E.A. (Eds.) Woodhead Publishing: Sawston, UK, 2016; p. iv. ISBN 978-1-78242-366-9. [Google Scholar]
- Xiu, S.; Shahbazi, A. Bio-Oil Production and Upgrading Research: A Review. Renew. Sustain. Energy Rev. 2012, 16, 4406–4414. [Google Scholar] [CrossRef]
- Fermoso, J.; Pizarro, P.; Coronado, J.M.; Serrano, D.P. Advanced Biofuels Production by Upgrading of Pyrolysis Bio-Oil. WIREs Energy Environ. 2017, 6, e245. [Google Scholar] [CrossRef]
- Attia, M.; Farag, S.; Chaouki, J. Upgrading of Oils from Biomass and Waste: Catalytic Hydrodeoxygenation. Catalysts 2020, 10, 1381. [Google Scholar] [CrossRef]
- Jing, Y.; Wang, Y. Catalytic Hydrodeoxygenation of Lignin-Derived Feedstock Into Arenes and Phenolics. Front. Chem. Eng. 2020, 2. [Google Scholar] [CrossRef]
- T. Ghampson, I.; Sepúlveda, C.; B. Dongil, A.; Pecchi, G.; García, R.; G. Fierro, J.L.; Escalona, N. Phenol Hydrodeoxygenation: Effect of Support and Re Promoter on the Reactivity of Co Catalysts. Catal. Sci. Technol. 2016, 6, 7289–7306. [Google Scholar] [CrossRef]
- Chen, H.-Y.T.; Pacchioni, G. Role of Oxide Reducibility in the Deoxygenation of Phenol on Ruthenium Clusters Supported on the Anatase Titania (1 0 1) Surface. ChemCatChem 2016, 8, 2492–2499. [Google Scholar] [CrossRef]
- de Souza, P.M.; Rabelo-Neto, R.C.; Borges, L.E.P.; Jacobs, G.; Davis, B.H.; Sooknoi, T.; Resasco, D.E.; Noronha, F.B. Role of Keto Intermediates in the Hydrodeoxygenation of Phenol over Pd on Oxophilic Supports. ACS Catal. 2015, 5, 1318–1329. [Google Scholar] [CrossRef]
- Nie, L.; Resasco, D.E. Kinetics and Mechanism of M-Cresol Hydrodeoxygenation on a Pt/SiO2 Catalyst. J. Catal. 2014, 317, 22–29. [Google Scholar] [CrossRef]
- Liu, X.; An, W.; Turner, C.H.; Resasco, D.E. Hydrodeoxygenation of M-Cresol over Bimetallic NiFe Alloys: Kinetics and Thermodynamics Insight into Reaction Mechanism. J. Catal. 2018, 359, 272–286. [Google Scholar] [CrossRef]
- Duong, N.; Tan, Q.; Resasco, D.E. Controlling Phenolic Hydrodeoxygenation by Tailoring Metal–O Bond Strength via Specific Catalyst Metal Type and Particle Size Selection. Comptes Rendus Chim. 2018, 21, 155–163. [Google Scholar] [CrossRef]
- Verma, A.M.; Kishore, N. DFT Study on Gas-Phase Hydrodeoxygenation of Guaiacol by Various Reaction Schemes. Mol. Simul. 2017, 43, 141–153. [Google Scholar] [CrossRef]
- Kirkwood, K.; Jackson, S.D. Competitive Hydrogenation and Hydrodeoxygenation of Oxygen-Substituted Aromatics over Rh/Silica: Catechol, Resorcinol and Hydroquinone. Top. Catal. 2021, 64, 934–944. [Google Scholar] [CrossRef]
- Morteo-Flores, F.; Engel, J.; Roldan, A. Biomass Hydrodeoxygenation Catalysts Innovation from Atomistic Activity Predictors. Philos. Transact. A Math. Phys. Eng. Sci. 2020, 378, 20200056. [Google Scholar] [CrossRef] [PubMed]
- Prabhudesai, V.S.; Gurrala, L.; Vinu, R. Catalytic Hydrodeoxygenation of Lignin-Derived Oxygenates: Catalysis, Mechanism, and Effect of Process Conditions. Energy Fuels 2022, 36, 1155–1188. [Google Scholar] [CrossRef]
- Peters, J.E.; Carpenter, J.R.; Dayton, D.C. Anisole and Guaiacol Hydrodeoxygenation Reaction Pathways over Selected Catalysts. Energy Fuels 2015, 29, 909–916. [Google Scholar] [CrossRef]
- Zhu, X.; Lobban, L.L.; Mallinson, R.G.; Resasco, D.E. Bifunctional Transalkylation and Hydrodeoxygenation of Anisole over a Pt/HBeta Catalyst. J. Catal. 2011, 281, 21–29. [Google Scholar] [CrossRef]
- Li, K.; Wang, R.; Chen, J. Hydrodeoxygenation of Anisole over Silica-Supported Ni2P, MoP, and NiMoP Catalysts. Energy Fuels 2011, 25, 854–863. [Google Scholar] [CrossRef]
- Alshehri, F.; Feral, C.; Kirkwood, K.; Jackson, S.D. Low Temperature Hydrogenation and Hydrodeoxygenation of Oxygen-Substituted Aromatics over Rh/Silica: Part 1: Phenol, Anisole and 4-Methoxyphenol. React. Kinet. Mech. Catal. 2019, 128, 23–40. [Google Scholar] [CrossRef]
- Nanda, S.; Pattnaik, F.; Borugadda, V.B.; Dalai, A.K.; Kozinski, J.A.; Naik, S. Catalytic and Noncatalytic Upgrading of Bio-Oil to Synthetic Fuels: An Introductory Review. In Catalytic and Noncatalytic Upgrading of Oils; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2021; Volume 1379, pp. 1–28. ISBN 978-0-8412-9842-2. [Google Scholar]
- Oasmaa, A.; Kuoppala, E. Fast Pyrolysis of Forestry Residue. 3. Storage Stability of Liquid Fuel. Energy Fuels 2003, 17, 1075–1084. [Google Scholar] [CrossRef]
- Oasmaa, A.; Kuoppala, E.; Selin, J.-F.; Gust, S.; Solantausta, Y. Fast Pyrolysis of Forestry Residue and Pine. 4. Improvement of the Product Quality by Solvent Addition. Energy Fuels 2004, 18, 1578–1583. [Google Scholar] [CrossRef]
- Luo, P.; Yang, C.; Tharanivasan, A.K.; Gu, Y. In Situ Upgrading of Heavy Oil in a Solvent-Based Heavy Oil Recovery Process. J. Can. Pet. Technol. 2007, 46. [Google Scholar] [CrossRef] [PubMed]
- Mei, Y.; Chai, M.; Shen, C.; Liu, B.; Liu, R. Effect of Methanol Addition on Properties and Aging Reaction Mechanism of Bio-Oil during Storage. Fuel 2019, 244, 499–507. [Google Scholar] [CrossRef]
- Liu, R.; Fei, W.; Shen, C. Influence of Acetone Addition on the Physicochemical Properties of Bio-Oils. J. Energy Inst. 2014, 87, 127–133. [Google Scholar] [CrossRef]
- Khosravanipour Mostafazadeh, A.; Solomatnikova, O.; Drogui, P.; Tyagi, R.D. A Review of Recent Research and Developments in Fast Pyrolysis and Bio-Oil Upgrading. Biomass Convers. Biorefinery 2018, 8, 739–773. [Google Scholar] [CrossRef]
- Zhu, L.; Li, K.; Zhang, Y.; Zhu, X. Upgrading the Storage Properties of Bio-Oil by Adding a Compound Additive. Energy Fuels 2017, 31, 6221–6227. [Google Scholar] [CrossRef]
- Bui, V.N.; Laurenti, D.; Afanasiev, P.; Geantet, C. Hydrodeoxygenation of Guaiacol with CoMo Catalysts. Part I: Promoting Effect of Cobalt on HDO Selectivity and Activity. Appl. Catal. B Environ. 2011, 101, 239–245. [Google Scholar] [CrossRef]
- Quan, C.; Xu, S.; Zhou, C. Steam Reforming of Bio-Oil from Coconut Shell Pyrolysis over Fe/Olivine Catalyst. Energy Convers. Manag. 2017, 141, 40–47. [Google Scholar] [CrossRef]
- Shafaghat, H.; Kim, J.M.; Lee, I.-G.; Jae, J.; Jung, S.-C.; Park, Y.-K. Catalytic Hydrodeoxygenation of Crude Bio-Oil in Supercritical Methanol Using Supported Nickel Catalysts. Renew. Energy 2019, 144, 159–166. [Google Scholar] [CrossRef]
- Tanneru, S.K.; Steele, P.H. Direct Hydrocracking of Oxidized Bio-Oil to Hydrocarbons. Fuel 2015, 154, 268–274. [Google Scholar] [CrossRef]
- Motasemi, F.; Afzal, M.T. A Review on the Microwave-Assisted Pyrolysis Technique. Renew. Sustain. Energy Rev. 2013, 28, 317–330. [Google Scholar] [CrossRef]
- Qu, M.; Cheng, Z.; Sun, Z.; Chen, D.; Yu, J.; Chen, J. Non-Thermal Plasma Coupled with Catalysis for VOCs Abatement: A Review. Process Saf. Environ. Prot. 2021, 153, 139–158. [Google Scholar] [CrossRef]
- Zhang, Q.; Chang, J.; Wang, T.; Xu, Y. Review of Biomass Pyrolysis Oil Properties and Upgrading Research. Energy Convers. Manag. 2007, 48, 87–92. [Google Scholar] [CrossRef]
- Nemich, S.; Kale; Deore, S.L. Emulsion Micro Emulsion and Nano Emulsion: A Review. Syst. Rev. Pharm. 2017, 8, 39–47. [Google Scholar] [CrossRef]
- Chiaramonti, D.; Bonini, M.; Fratini, E.; Tondi, G.; Gartner, K.; Bridgwater, A.V.; Grimm, H.P.; Soldaini, I.; Webster, A.; Baglioni, P. Development of Emulsions from Biomass Pyrolysis Liquid and Diesel and Their Use in Engines—Part 1: Emulsion Production. Biomass Bioenergy 2003, 25, 85–99. [Google Scholar] [CrossRef]
- Majhi, A.; Sharma, Y.K.; Naik, D.V. Blending Optimization of Hempel Distilled Bio-Oil with Commercial Diesel. Fuel 2012, 96, 264–269. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, S.; Wang, X. Stability Mechanism Investigation of Emulsion Fuels from Biomass Pyrolysis Oil and Diesel. Energy 2014, 66, 250–255. [Google Scholar] [CrossRef]
- Ogunkoya, D.; Li, S.; Rojas, O.J.; Fang, T. Performance, Combustion, and Emissions in a Diesel Engine Operated with Fuel-in-Water Emulsions Based on Lignin. Appl. Energy 2015, 154, 851–861. [Google Scholar] [CrossRef]
- Park, S.; Woo, S.; Kim, H.; Lee, K. The Characteristic of Spray Using Diesel Water Emulsified Fuel in a Diesel Engine. Appl. Energy 2016, 176, 209–220. [Google Scholar] [CrossRef]
- Jiang, X.; Ellis, N. Upgrading Bio-Oil through Emulsification with Biodiesel: Thermal Stability. Energy Fuels 2010, 24, 2699–2706. [Google Scholar] [CrossRef]
- Schmidts, T.; Dobler, D.; Guldan, A.-C.; Paulus, N.; Runkel, F. Multiple W/O/W Emulsions—Using the Required HLB for Emulsifier Evaluation. Colloids Surf. Physicochem. Eng. Asp. 2010, 372, 48–54. [Google Scholar] [CrossRef]
- Panwar, N.L.; Paul, A.S. An Overview of Recent Development in Bio-Oil Upgrading and Separation Techniques. Environ. Eng. Res. 2021, 26. [Google Scholar] [CrossRef]
- Lu, Q.; Zhang, Z.-B.; Liao, H.-T.; Yang, X.-C.; Dong, C.-Q. Lubrication Properties of Bio-Oil and Its Emulsions with Diesel Oil. Energies 2012, 5, 741–751. [Google Scholar] [CrossRef]
- Zhang, M.; Wu, H. Stability of Emulsion Fuels Prepared from Fast Pyrolysis Bio-Oil and Glycerol. Fuel 2017, 206, 230–238. [Google Scholar] [CrossRef]
- de Luna, M.D.G.; Cruz, L.A.D.; Chen, W.-H.; Lin, B.-J.; Hsieh, T.-H. Improving the Stability of Diesel Emulsions with High Pyrolysis Bio-Oil Content by Alcohol Co-Surfactants and High Shear Mixing Strategies. Energy 2017, 141, 1416–1428. [Google Scholar] [CrossRef]
- Liu, K.; Zhao, W.; Guo, T.; Lei, Q.; Guan, Y.; Wang, D.; Cui, M.; Fu, S.; Zhao, J.; Zong, Z.; et al. Emulsification and Performance Measurement of Bio-Oil with Diesel. Waste Biomass Valorization 2021, 12, 2933–2944. [Google Scholar] [CrossRef]
- Duan, P.; Savage, P.E. Catalytic Hydrotreatment of Crude Algal Bio-Oil in Supercritical Water. Appl. Catal. B Environ. 2011, 104, 136–143. [Google Scholar] [CrossRef]
- Zhang, J.; Luo, Z.; Dang, Q.; Wang, J.; Chen, W. Upgrading of Bio-Oil over Bifunctional Catalysts in Supercritical Monoalcohols. Energy Fuels 2012, 26, 2990–2995. [Google Scholar] [CrossRef]
- Saber, M.; Nakhshiniev, B.; Yoshikawa, K. A Review of Production and Upgrading of Algal Bio-Oil. Renew. Sustain. Energy Rev. 2016, 58, 918–930. [Google Scholar] [CrossRef]
- Lee, J.-H.; Lee, I.-G.; Park, J.-Y.; Lee, K.-Y. Efficient Upgrading of Pyrolysis Bio-Oil over Ni-Based Catalysts in Supercritical Ethanol. Fuel 2019, 241, 207–217. [Google Scholar] [CrossRef]
- Prajitno, H.; Insyani, R.; Park, J.; Ryu, C.; Kim, J. Non-Catalytic Upgrading of Fast Pyrolysis Bio-Oil in Supercritical Ethanol and Combustion Behavior of the Upgraded Oil. Appl. Energy 2016, 172, 12–22. [Google Scholar] [CrossRef]
- Xiaojie, Z.; Mukherjee, K.; Manna, S.; Das, M.K.; Kim, J.K.; Sinha, T.K. Chapter 24—Efficient Management of Oil Waste: Chemical and Physicochemical Approaches. In Advances in Oil-Water Separation; Das, P., Manna, S., Pandey, J.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 439–467. ISBN 978-0-323-89978-9. [Google Scholar]
- Morales-Delarosa, S.; Campos-Martin, J.M. 6—Catalytic Processes and Catalyst Development in Biorefining. In Advances in Biorefineries; Waldron, K., Ed.; Woodhead Publishing: Sawston, UK, 2014; pp. 152–198. ISBN 978-0-85709-521-3. [Google Scholar]
- Jin, W.; Pastor-Pérez, L.; Shen, D.; Sepúlveda-Escribano, A.; Gu, S.; Ramirez Reina, T. Catalytic Upgrading of Biomass Model Compounds: Novel Approaches and Lessons Learnt from Traditional Hydrodeoxygenation—A Review. ChemCatChem 2019, 11, 924–960. [Google Scholar] [CrossRef]
- Elkasabi, Y.; Mullen, C.A.; Pighinelli, A.L.M.T.; Boateng, A.A. Hydrodeoxygenation of Fast-Pyrolysis Bio-Oils from Various Feedstocks Using Carbon-Supported Catalysts. Fuel Process. Technol. 2014, 123, 11–18. [Google Scholar] [CrossRef]
- Ly, H.V.; Kim, J.; Hwang, H.T.; Choi, J.H.; Woo, H.C.; Kim, S.-S. Catalytic Hydrodeoxygenation of Fast Pyrolysis Bio-Oil from Saccharina Japonica Alga for Bio-Oil Upgrading. Catalysts 2019, 9, 1043. [Google Scholar] [CrossRef]
- Kan, T.; Xiong, J.; Li, X.; Ye, T.; Yuan, L.; Torimoto, Y.; Yamamoto, M.; Li, Q. High Efficient Production of Hydrogen from Crude Bio-Oil via an Integrative Process between Gasification and Current-Enhanced Catalytic Steam Reforming. Int. J. Hydrogen Energy 2010, 35, 518–532. [Google Scholar] [CrossRef]
- Singh, V.; Das, D. Chapter 3 - Potential of Hydrogen Production From Biomass. In Science and Engineering of Hydrogen-Based Energy Technologies; de Miranda, P.E.V., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 123–164. ISBN 978-0-12-814251-6. [Google Scholar]
- Lan, P.; Xu, Q.; Zhou, M.; Lan, L.; Zhang, S.; Yan, Y. Catalytic Steam Reforming of Fast Pyrolysis Bio-Oil in Fixed Bed and Fluidized Bed Reactors. Chem. Eng. Technol. 2010, 33, 2021–2028. [Google Scholar] [CrossRef]
- Mei, Y.; Wu, C.; Liu, R. Hydrogen Production from Steam Reforming of Bio-Oil Model Compound and Byproducts Elimination. Int. J. Hydrogen Energy 2016, 41, 9145–9152. [Google Scholar] [CrossRef]
- Trane-Restrup, R.; Resasco, D.E.; Jensen, A.D. Steam Reforming of Light Oxygenates. Catal. Sci. Technol. 2013, 3, 3292–3302. [Google Scholar] [CrossRef]
- Valle, B.; Aramburu, B.; Benito, P.L.; Bilbao, J.; Gayubo, A.G. Biomass to Hydrogen-Rich Gas via Steam Reforming of Raw Bio-Oil over Ni/La2O3-αAl2O3 Catalyst: Effect of Space-Time and Steam-to-Carbon Ratio. Fuel 2018, 216, 445–455. [Google Scholar] [CrossRef]
- Singh, P.P.; Jaswal, A.; Nirmalkar, N.; Mondal, T. Synergistic Effect of Transition Metals Substitution on the Catalytic Activity of LaNi0.5M0.5O3 (M = Co, Cu, and Fe) Perovskite Catalyst for Steam Reforming of Simulated Bio-Oil for Green Hydrogen Production. Renew. Energy 2023, 207, 575–587. [Google Scholar] [CrossRef]
- Iliuta, I.; Desgagnés, A.; Yáñez Aulestia, A.; Pfeiffer, H.; Iliuta, M.C. Intensified Bio-Oil Steam Reforming for High-Purity Hydrogen Production: Numerical Simulation and Sorption Kinetics. Int. J. Hydrogen Energy 2023, 48, 8783–8806. [Google Scholar] [CrossRef]
- Ren, R.; Han, X.; Zhang, H.; Lin, H.; Zhao, J.; Zheng, Y.; Wang, H. High Yield Bio-Oil Production by Hydrothermal Liquefaction of a Hydrocarbon-Rich Microalgae and Biocrude Upgrading. Carbon Resour. Convers. 2018, 1, 153–159. [Google Scholar] [CrossRef]
- Mortensen, P.M.; Grunwaldt, J.-D.; Jensen, P.A.; Knudsen, K.G.; Jensen, A.D. A Review of Catalytic Upgrading of Bio-Oil to Engine Fuels. Appl. Catal. Gen. 2011, 407, 1–19. [Google Scholar] [CrossRef]
- Marinescu, M.; Popovici, D.R.; Bombos, D.; Vasilievici, G.; Rosca, P.; Oprescu, E.-E.; Bolocan, I. Hydrodeoxygenation and Hydrocracking of Oxygenated Compounds over CuPd/γ-Al2O3–ZSM-5 Catalyst. React. Kinet. Mech. Catal. 2021, 133, 1013–1026. [Google Scholar] [CrossRef]
- Aerts, R.; Tu, X.; Van Gaens, W.; Whitehead, J.C.; Bogaerts, A. Gas Purification by Nonthermal Plasma: A Case Study of Ethylene. Environ. Sci. Technol. 2013, 47, 6478–6485. [Google Scholar] [CrossRef] [PubMed]
- Taghvaei, H.; Jahanmiri, A.; Rahimpour, M.R.; Shirazi, M.M.; Hooshmand, N. Hydrogen Production through Plasma Cracking of Hydrocarbons: Effect of Carrier Gas and Hydrocarbon Type. Chem. Eng. J. 2013, 226, 384–392. [Google Scholar] [CrossRef]
- Liu, Y.; Dou, L.; Sun, H.; Zhang, C.; Murphy, A.B.; Shao, T. Selective Clipping of a Lignin-Derived Monomer by Plasma for Bio-Oil Upgrading. ACS Sustain. Chem. Eng. 2023, 11, 101–112. [Google Scholar] [CrossRef]
- Taghvaei, H.; Kheirollahivash, M.; Ghasemi, M.; Rostami, P.; Rahimpour, M.R. Noncatalytic Upgrading of Anisole in an Atmospheric DBD Plasma Reactor: Effect of Carrier Gas Type, Voltage, and Frequency. Energy Fuels 2014, 28, 2535–2543. [Google Scholar] [CrossRef]
- Taghvaei, H.; Rahimpour, M.R. Catalytic Hydrodeoxygenation of Bio-Oil Using in Situ Generated Hydrogen in Plasma Reactor: Effects of Allumina Supported Catalysts and Plasma Parameters. Process Saf. Environ. Prot. 2019, 121, 221–228. [Google Scholar] [CrossRef]
- Khalifeh, O.; Mosallanejad, A.; Taghvaei, H.; Rahimpour, M.R.; Shariati, A. Decomposition of Methane to Hydrogen Using Nanosecond Pulsed Plasma Reactor with Different Active Volumes, Voltages and Frequencies. Appl. Energy 2016, 169, 585–596. [Google Scholar] [CrossRef]
- Khalifeh, O.; Taghvaei, H.; Mosallanejad, A.; Rahimpour, M.R.; Shariati, A. Extra Pure Hydrogen Production through Methane Decomposition Using Nanosecond Pulsed Plasma and Pt–Re Catalyst. Chem. Eng. J. 2016, 294, 132–145. [Google Scholar] [CrossRef]
- Paixão, V.; Monteiro, R.; Andrade, M.; Fernandes, A.; Rocha, J.; Carvalho, A.P.; Martins, A. Desilication of MOR Zeolite: Conventional versus Microwave Assisted Heating. Appl. Catal. Gen. 2011, 402, 59–68. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, J.; Wang, Y. Recent Advances in the Selective Catalytic Hydrodeoxygenation of Lignin-Derived Oxygenates to Arenes. Green Chem. 2020, 22, 1072–1098. [Google Scholar] [CrossRef]
- Zhang, H.; Lin, H.; Zheng, Y. The Role of Cobalt and Nickel in Deoxygenation of Vegetable Oils. Appl. Catal. B Environ. 2014, 160–161, 415–422. [Google Scholar] [CrossRef]
- Sharifvaghefi, S.; Yang, B.; Zheng, Y. New Insights on the Role of H2S and Sulfur Vacancies on Dibenzothiophene Hydrodesulfurization over MoS2 Edges. Appl. Catal. Gen. 2018, 566, 164–173. [Google Scholar] [CrossRef]
- Elliott, D.C.; Wang, H.; Rover, M.; Whitmer, L.; Smith, R.; Brown, R. Hydrocarbon Liquid Production via Catalytic Hydroprocessing of Phenolic Oils Fractionated from Fast Pyrolysis of Red Oak and Corn Stover. ACS Sustain. Chem. Eng. 2015, 3, 892–902. [Google Scholar] [CrossRef]
- Lee, H.W.; Jun, B.R.; Kim, H.; Kim, D.H.; Jeon, J.-K.; Park, S.H.; Ko, C.H.; Kim, T.-W.; Park, Y.-K. Catalytic Hydrodeoxygenation of 2-Methoxy Phenol and Dibenzofuran over Pt/Mesoporous Zeolites. Energy 2015, 81, 33–40. [Google Scholar] [CrossRef]
- Shabtai, J.; Nag, N.K.; Massoth, F.E. Catalytic Functionalities of Supported Sulfides: IV. C O Hydrogenolysis Selectivity as a Function of Promoter Type. J. Catal. 1987, 104, 413–423. [Google Scholar] [CrossRef]
- Yoshimura, Y.; Sato, T.; Shimada, H.; Matsubayashi, N.; Nishijima, A. Influences of Oxygen-Containing Substances on Deactivation of Sulfided Molybdate Catalysts. Appl. Catal. 1991, 73, 55–63. [Google Scholar] [CrossRef]
- Yoosuk, B.; Tumnantong, D.; Prasassarakich, P. Amorphous Unsupported Ni–Mo Sulfide Prepared by One Step Hydrothermal Method for Phenol Hydrodeoxygenation. Fuel 2012, 91, 246–252. [Google Scholar] [CrossRef]
- Whiffen, V.M.L.; Smith, K.J. Hydrodeoxygenation of 4-Methylphenol over Unsupported MoP, MoS2, and MoOx Catalysts. Energy Fuels 2010, 24, 4728–4737. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, K.; Qiao, Z.; Li, L.; Liu, P.; Yang, Y. Influence of Surfactants on the Synthesis of MoS2 Catalysts and Their Activities in the Hydrodeoxygenation of 4-Methylphenol. Ind. Eng. Chem. Res. 2014, 53, 10301–10309. [Google Scholar] [CrossRef]
- Bunch, A.Y.; Ozkan, U.S. Investigation of the Reaction Network of Benzofuran Hydrodeoxygenation over Sulfided and Reduced Ni–Mo/Al2O3 Catalysts. J. Catal. 2002, 206, 177–187. [Google Scholar] [CrossRef]
- Bunch, A.Y.; Wang, X.; Ozkan, U.S. Hydrodeoxygenation of Benzofuran over Sulfided and Reduced Ni–Mo/γ-Al2O3 Catalysts: Effect of H2S. J. Mol. Catal. Chem. 2007, 270, 264–272. [Google Scholar] [CrossRef]
- Mortensen, P.M.; Gardini, D.; Damsgaard, C.D.; Grunwaldt, J.-D.; Jensen, P.A.; Wagner, J.B.; Jensen, A.D. Deactivation of Ni-MoS2 by Bio-Oil Impurities during Hydrodeoxygenation of Phenol and Octanol. Appl. Catal. Gen. 2016, 523, 159–170. [Google Scholar] [CrossRef]
- Şenol, O.İ.; Ryymin, E.-M.; Viljava, T.-R.; Krause, A.O.I. Effect of Hydrogen Sulphide on the Hydrodeoxygenation of Aromatic and Aliphatic Oxygenates on Sulphided Catalysts. J. Mol. Catal. Chem. 2007, 277, 107–112. [Google Scholar] [CrossRef]
- Gutierrez, A.; Turpeinen, E.-M.; Viljava, T.-R.; Krause, O. Hydrodeoxygenation of Model Compounds on Sulfided CoMo/γ-Al2O3 and NiMo/γ-Al2O3 Catalysts; Role of Sulfur-Containing Groups in Reaction Networks. Catal. Today 2017, 285, 125–134. [Google Scholar] [CrossRef]
- Laskar, D.D.; Tucker, M.P.; Chen, X.; Helms, G.L.; Yang, B. Noble-Metal Catalyzed Hydrodeoxygenation of Biomass-Derived Lignin to Aromatic Hydrocarbons. Green Chem. 2014, 16, 897–910. [Google Scholar] [CrossRef]
- Grilc, M.; Likozar, B.; Levec, J. Hydrodeoxygenation and Hydrocracking of Solvolysed Lignocellulosic Biomass by Oxide, Reduced and Sulphide Form of NiMo, Ni, Mo and Pd Catalysts. Appl. Catal. B Environ. 2014, 150–151, 275–287. [Google Scholar] [CrossRef]
- Ardiyanti, A.R.; Gutierrez, A.; Honkela, M.L.; Krause, A.O.I.; Heeres, H.J. Hydrotreatment of Wood-Based Pyrolysis Oil Using Zirconia-Supported Mono- and Bimetallic (Pt, Pd, Rh) Catalysts. Appl. Catal. Gen. 2011, 407, 56–66. [Google Scholar] [CrossRef]
- Ryymin, E.-M.; Honkela, M.L.; Viljava, T.-R.; Krause, A.O.I. Competitive Reactions and Mechanisms in the Simultaneous HDO of Phenol and Methyl Heptanoate over Sulphided NiMo/γ-Al2O3. Appl. Catal. Gen. 2010, 389, 114–121. [Google Scholar] [CrossRef]
- Yang, Y.Q.; Tye, C.T.; Smith, K.J. Influence of MoS2 Catalyst Morphology on the Hydrodeoxygenation of Phenols. Catal. Commun. 2008, 9, 1364–1368. [Google Scholar] [CrossRef]
- Furimsky, E.; Massoth, F.E. Deactivation of Hydroprocessing Catalysts. Catal. Today 1999, 52, 381–495. [Google Scholar] [CrossRef]
- Wandas, R.; Surygala, J.; Śliwka, E. Conversion of Cresols and Naphthalene in the Hydroprocessing of Three-Component Model Mixtures Simulating Fast Pyrolysis Tars. Fuel 1996, 75, 687–694. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, W.; Zhang, Q.; Wang, T.; Ma, L. Hydrodeoxygenation of Lignin-Derived Phenoic Compounds to Hydrocarbon Fuel over Supported Ni-Based Catalysts. Appl. Energy 2018, 227, 73–79. [Google Scholar] [CrossRef]
- Fang, H.; Zheng, J.; Luo, X.; Du, J.; Roldan, A.; Leoni, S.; Yuan, Y. Product Tunable Behavior of Carbon Nanotubes-Supported Ni–Fe Catalysts for Guaiacol Hydrodeoxygenation. Appl. Catal. Gen. 2017, 529, 20–31. [Google Scholar] [CrossRef]
- Tran, C.-C.; Stankovikj, F.; Garcia-Perez, M.; Kaliaguine, S. Unsupported Transition Metal-Catalyzed Hydrodeoxygenation of Guaiacol. Catal. Commun. 2017, 101, 71–76. [Google Scholar] [CrossRef]
- Lu, Q.; Li, W.-Z.; Zhu, X.-F. Overview of Fuel Properties of Biomass Fast Pyrolysis Oils. Energy Convers. Manag. 2009, 50, 1376–1383. [Google Scholar] [CrossRef]
- Mora-Vergara, I.D.; Hernández Moscoso, L.; Gaigneaux, E.M.; Giraldo, S.A.; Baldovino-Medrano, V.G. Hydrodeoxygenation of Guaiacol Using NiMo and CoMo Catalysts Supported on Alumina Modified with Potassium. Catal. Today 2018, 302, 125–135. [Google Scholar] [CrossRef]
- Rodríguez-Aguado, E.; Infantes-Molina, A.; Cecilia, J.A.; Ballesteros-Plata, D.; López-Olmo, R.; Rodríguez-Castellón, E. CoxPy Catalysts in HDO of Phenol and Dibenzofuran: Effect of P Content. Top. Catal. 2017, 60, 1094–1107. [Google Scholar] [CrossRef]
- Hong, Y.; Zhang, H.; Sun, J.; Ayman, K.M.; Hensley, A.J.R.; Gu, M.; Engelhard, M.H.; McEwen, J.-S.; Wang, Y. Synergistic Catalysis between Pd and Fe in Gas Phase Hydrodeoxygenation of M-Cresol. ACS Catal. 2014, 4, 3335–3345. [Google Scholar] [CrossRef]
- Madsen, A.T.; Ahmed, E.H.; Christensen, C.H.; Fehrmann, R.; Riisager, A. Hydrodeoxygenation of Waste Fat for Diesel Production: Study on Model Feed with Pt/Alumina Catalyst. Fuel 2011, 90, 3433–3438. [Google Scholar] [CrossRef]
- Gutierrez, A.; Kaila, R.K.; Honkela, M.L.; Slioor, R.; Krause, A.O.I. Hydrodeoxygenation of Guaiacol on Noble Metal Catalysts. Catal. Today 2009, 147, 239–246. [Google Scholar] [CrossRef]
- Wang, Y.; He, T.; Liu, K.; Wu, J.; Fang, Y. From Biomass to Advanced Bio-Fuel by Catalytic Pyrolysis/Hydro-Processing: Hydrodeoxygenation of Bio-Oil Derived from Biomass Catalytic Pyrolysis. Bioresour. Technol. 2012, 108, 280–284. [Google Scholar] [CrossRef]
- Fisk, C.A.; Morgan, T.; Ji, Y.; Crocker, M.; Crofcheck, C.; Lewis, S.A. Bio-Oil Upgrading over Platinum Catalysts Using in Situ Generated Hydrogen. Appl. Catal. Gen. 2009, 358, 150–156. [Google Scholar] [CrossRef]
- Montassier, C.; Ménézo, J.C.; Hoang, L.C.; Renaud, C.; Barbier, J. Aqueous Polyol Conversions on Ruthenium and on Sulfur-Modified Ruthenium. J. Mol. Catal. 1991, 70, 99–110. [Google Scholar] [CrossRef]
- Feng, J.; Fu, H.; Wang, J.; Li, R.; Chen, H.; Li, X. Hydrogenolysis of Glycerol to Glycols over Ruthenium Catalysts: Effect of Support and Catalyst Reduction Temperature. Catal. Commun. 2008, 9, 1458–1464. [Google Scholar] [CrossRef]
- Furikado, I.; Miyazawa, T.; Koso, S.; Shimao, A.; Kunimori, K.; Tomishige, K. Catalytic Performance of Rh/SiO2 in Glycerol Reaction under Hydrogen. Green Chem. 2007, 9, 582–588. [Google Scholar] [CrossRef]
- Shu, R.; Li, R.; Lin, B.; Luo, B.; Tian, Z. High Dispersed Ru/SiO2-ZrO2 Catalyst Prepared by Polyol Reduction Method and Its Catalytic Applications in the Hydrodeoxygenation of Phenolic Compounds and Pyrolysis Lignin-Oil. Fuel 2020, 265, 116962. [Google Scholar] [CrossRef]
- Shi, H.; Chen, J.; Yang, Y.; Tian, S. Catalytic Deoxygenation of Methyl Laurate as a Model Compound to Hydrocarbons on Nickel Phosphide Catalysts: Remarkable Support Effect. Fuel Process. Technol. 2014, 118, 161–170. [Google Scholar] [CrossRef]
- Yang, Y.; Lv, G.; Deng, L.; Lu, B.; Li, J.; Zhang, J.; Shi, J.; Du, S. Renewable Aromatic Production through Hydrodeoxygenation of Model Bio-Oil over Mesoporous Ni/SBA-15 and Co/SBA-15. Microporous Mesoporous Mater. 2017, 250, 47–54. [Google Scholar] [CrossRef]
- Hong, Y.; Hensley, A.; McEwen, J.-S.; Wang, Y. Perspective on Catalytic Hydrodeoxygenation of Biomass Pyrolysis Oils: Essential Roles of Fe-Based Catalysts. Catal. Lett. 2016, 146, 1621–1633. [Google Scholar] [CrossRef]
- Olcese, R.N.; Bettahar, M.; Petitjean, D.; Malaman, B.; Giovanella, F.; Dufour, A. Gas-Phase Hydrodeoxygenation of Guaiacol over Fe/SiO2 Catalyst. Appl. Catal. B Environ. 2012, 115–116, 63–73. [Google Scholar] [CrossRef]
- Huynh, T.M.; Armbruster, U.; Kreyenschulte, C.R.; Nguyen, L.H.; Phan, B.M.Q.; Nguyen, D.A.; Martin, A. Understanding the Performance and Stability of Supported Ni-Co-Based Catalysts in Phenol HDO. Catalysts 2016, 6, 176. [Google Scholar] [CrossRef]
- Ding, L.; Zheng, Y.; Yang, H.; Parviz, R. LCO Hydrotreating with Mo-Ni and W-Ni Supported on Nano- and Micro-Sized Zeolite Beta. Appl. Catal. Gen. 2009, 353, 17–23. [Google Scholar] [CrossRef]
- Saidi, M.; Samimi, F.; Karimipourfard, D.; Nimmanwudipong, T.; C. Gates, B.; Reza Rahimpour, M. Upgrading of Lignin-Derived Bio-Oils by Catalytic Hydrodeoxygenation. Energy Environ. Sci. 2014, 7, 103–129. [Google Scholar] [CrossRef]
- Do, P.T.M.; Foster, A.J.; Chen, J.; Lobo, R.F. Bimetallic Effects in the Hydrodeoxygenation of Meta-Cresol on γ-Al2O3 Supported Pt–Ni and Pt–Co Catalysts. Green Chem. 2012, 14, 1388–1397. [Google Scholar] [CrossRef]
- Robinson, A.; Ferguson, G.A.; Gallagher, J.R.; Cheah, S.; Beckham, G.T.; Schaidle, J.A.; Hensley, J.E.; Medlin, J.W. Enhanced Hydrodeoxygenation of M-Cresol over Bimetallic Pt–Mo Catalysts through an Oxophilic Metal-Induced Tautomerization Pathway. ACS Catal. 2016, 6, 4356–4368. [Google Scholar] [CrossRef]
- Barroso-Martín, I.; Ballesteros-Plata, D.; Infantes-Molina, A.; Guerrero-Pérez, M.O.; Santamaría-González, J.; Rodríguez-Castellón, E. An Overview of Catalysts for the Hydrodeoxygenation Reaction of Model Compounds from Lignocellulosic Biomass. IET Renew. Power Gener. 2022, 16, 3009–3022. [Google Scholar] [CrossRef]
- Si, Z.; Zhang, X.; Wang, C.; Ma, L.; Dong, R. An Overview on Catalytic Hydrodeoxygenation of Pyrolysis Oil and Its Model Compounds. Catalysts 2017, 7, 169. [Google Scholar] [CrossRef]
- Prasomsri, T.; Shetty, M.; Murugappan, K.; Román-Leshkov, Y. Insights into the Catalytic Activity and Surface Modification of MoO3 during the Hydrodeoxygenation of Lignin-Derived Model Compounds into Aromatic Hydrocarbons under Low Hydrogen Pressures. Energy Environ. Sci. 2014, 7, 2660–2669. [Google Scholar] [CrossRef]
- Mendes, F.L.; da Silva, V.T.; Pacheco, M.E.; Toniolo, F.S.; Henriques, C.A. Bio-Oil Hydrotreating Using Nickel Phosphides Supported on Carbon-Covered Alumina. Fuel 2019, 241, 686–694. [Google Scholar] [CrossRef]
- Liu, G.; Hou, F.; Wang, X.; Fang, B. Stainless Steel-Supported Amorphous Nickel Phosphide/Nickel as an Electrocatalyst for Hydrogen Evolution Reaction. Nanomaterials 2022, 12, 3328. [Google Scholar] [CrossRef]
- Zhao, H.Y.; Li, D.; Bui, P.; Oyama, S.T. Hydrodeoxygenation of Guaiacol as Model Compound for Pyrolysis Oil on Transition Metal Phosphide Hydroprocessing Catalysts. Appl. Catal. Gen. 2011, 391, 305–310. [Google Scholar] [CrossRef]
- Smirnov, A.A.; Geng, Z.; Khromova, S.A.; Zavarukhin, S.G.; Bulavchenko, O.A.; Saraev, A.A.; Kaichev, V.V.; Ermakov, D.Y.; Yakovlev, V.A. Nickel Molybdenum Carbides: Synthesis, Characterization, and Catalytic Activity in Hydrodeoxygenation of Anisole and Ethyl Caprate. J. Catal. 2017, 354, 61–77. [Google Scholar] [CrossRef]
- Ghampson, I.T.; Canales, R.; Escalona, N. A Study of the Hydrodeoxygenation of Anisole over Re-MoOx/TiO2 Catalyst. Appl. Catal. Gen. 2018, 549, 225–236. [Google Scholar] [CrossRef]
- Cheng, S.; Wei, L.; Zhao, X.; Julson, J. Application, Deactivation, and Regeneration of Heterogeneous Catalysts in Bio-Oil Upgrading. Catalysts 2016, 6, 195. [Google Scholar] [CrossRef]
- Jacobson, K.; Maheria, K.C.; Kumar Dalai, A. Bio-Oil Valorization: A Review. Renew. Sustain. Energy Rev. 2013, 23, 91–106. [Google Scholar] [CrossRef]
- Patil, M.L.; Lali, A.M.; Dalai, A.K. Catalytic Hydrodeoxygenation of Bio-Oil Model Compound for Production of Fuel Grade Oil. Asia-Pac. J. Chem. Eng. 2019, 14, e2317. [Google Scholar] [CrossRef]
- Zanuttini, M.S.; Dalla Costa, B.O.; Querini, C.A.; Peralta, M.A. Hydrodeoxygenation of M-Cresol with Pt Supported over Mild Acid Materials. Appl. Catal. Gen. 2014, 482, 352–361. [Google Scholar] [CrossRef]
- Chen, W.; Luo, Z.; Yu, C.; Li, G.; Yang, Y.; Zhang, H. Upgrading of Bio-Oil in Supercritical Ethanol: Catalysts Screening, Solvent Recovery and Catalyst Stability Study. J. Supercrit. Fluids 2014, 95, 387–393. [Google Scholar] [CrossRef]
Different Groups Compounds | Categories of Functional Groups | Typical Compounds |
---|---|---|
Water | - | Water |
Simple oxygenates (non-aromatic) | Esters | Methyl acetate, ethyl acetate, methyl formate |
Alcohols | Methanol, Butanol, Cyclohexanol, Cyclopentanol, ethylene glycol | |
Acids | Hexanoic acid, Acetic acid, Propanoic acid, Formic acid, Butanoic acid, glycolic acid | |
Aldehydes | 2-butenal, glyoxal, formaldehyde, benzaldehyde | |
Ketones | Cyclohexanone, Cyclopentanone, 2-butanone | |
Sugars and sugar derivatives | Xylose, glucose, fructose, sorbitol, arabinose | |
Levoglucosan | ||
Furans | - | Furfural, furfuryl alcohol, tetrahydrofuran, 2-furanone, butyrolactone, 2-acetyl furan, methyl-2-furanone, 2,5-dimethyltetrahydrofuran |
Aromatics | Oxygen free | Toluene, Benzene, Xylene |
Phenols | Methylphenol, dimethylphenol, ethylphenol, phenol | |
Catechols | Methylcatechol, ethylcatechol, methoxycatechol, catechol | |
Guaiacols | Methylguaiacol, ethylguaiacol, eugenol, vanillin, guaiacol | |
Syringols | Methylsyringol, ethylsyringol, 4-propenylsyringol, syringol | |
Miscellaneous oxygenates | - | 2-hydroxyacetaldehyde 1-hydroxy-2-propanone 1-hydroxy-2-butanone |
High molecular weight species | - | Dimers, trimers, oligomers and cellulose, hemicellulose, and lignin pyrolysis products |
Properties | Bio-Crude Oil (a) | Heavy Oil |
---|---|---|
pH | 2–4 | - |
Density (kg/m3) | 1200 | 940 |
Moisture content (i.e., water) (wt%) | 15–30 | 0.1 |
HHV(MJ/kg) | 16–19 | 40 |
Viscosity (cP, 50 °C) | 40–100 | 180 |
Flash point (K) | 300–370 | 327 |
Solids(wt%) | 0.2–1 | 1 |
Ash (wt%) | 0–0.2 | 0.1 |
NOx emission | below 0.7 | 1.4 |
SOx emission | 0 | 0.28 |
H/C | 0.9–1.5 | 1.5–2.0 |
C/O | 2–3.3 | - |
Element Content (wt%) | ||
Carbon (C) | 48–65 | 83–86 |
Hydrogen (H) | 5.5–8 | 11–14 |
Oxygen (O) | 30–55 | below 1 |
Nitrogen (N) | 0–0.3 | below 0.3 |
Sulfer (S) | below 0.05 | below 3.0 |
Na+ (ppm) | 5–500 | - |
Ca (ppm) | 4–600 | - |
Upgrading Approach | Advantages | Media and the Reaction | Limitation and Challenges | Ref. |
---|---|---|---|---|
Solvent Addition | Easy Operation and increases in bio-lower oil’s heating value, reduces density and viscosity | Alcohol: methanol, ethanol, and isopropanol. | Decrease in the bio-flash oil’s point. Unfavourable materials cannot be removed (Oxygen) | [38] |
Emulsion | Easy operation, low cost, increase calorific value and decreases water content | Emulsifiers used—Span 20, Span 80 and Span 100. Span 85, Tween 85, Span 60, Brij 72 and hypermer B246. Tween 80, and Lignin | Surfactant costs are considerable, energy use is high, corrosion and stability issues and unfavourable chemicals cannot be removed. | [38] |
Hydrotreatment (HDO) | Utilizing compressed hydrogen to remove oxygen, increasing heating value and lowering bio-crude oil viscosity, moderate reaction condition | sulfide Fe, Co, CoMo, NiMo, NiCu, NiMo/Al2O3 and CoMo/Al2O3 platinum, rhodium, ruthenium and nickel | High-pressure hydrogen is necessary, coke formation, catalyst deactivation, high cost and inefficient use of hydrogen | [62] |
Steam reforming | The main product is highly energy dense H2. | Base and noble metal catalysts: Co, Cu, Ir, Ni, Rh, Pt, Pd and Fe. Supported materials: MgO, MgO-Al2O3, CeO2, ZrO2, Calcite, Dolomite, Al2O3 Zeolites-Y, ZnO, | Coking and catalyst cost, relatively short catalyst stability and reactivity, and the need for high-temperature-resistant reactors | [63] |
Supercritical fluids | It helps bio-crude oil have a higher heating value while also reducing its acid number | Ethanol, methanol, CO2 and used as solvents include and water. used catalyst: Pt/C Ni | high price of the solvent | [64] |
Catalytic Cracking | Removes bio-crude oil molecules that contain oxygen while also enhancing its calorific value, viscosity, acidity, and water content | Calcined Dolomite, Na2CO3, K2CO3, catalyst with nickel ZnHZSM-5, SAPO-11, FCC, H-mordenite, Ni/SiO2-N, MgAPO-36, and HZSM-5 Na2CO3/Al2O3, K2CO3, MgO and Ca(OH)2 | low-grade bio-crude oil is produced, reduced catalyst life and reactor fouling | [38] |
Catalytic Hydrocracking | The formation of light components | Ni-Mo and Co-Mo sulfide catalysts over zeolites | High-pressure H2 production, catalyst deactivation, and coke formation are necessary, as well as the need for a reactor with high pressure tolerance. | [65] |
Microwave heating | Reduced energy use yet rapid reaction rates, selective heating, easy handling | HZSM-5 aluminosilicate zeolite, K3PO4, metal oxides (such as Fe2O3 and Al2O3) | Uneven heat distribution unsuitable for scale-up, difficulties in reaction monitoring | [66] |
Non-thermal plasma | Low temperatures and atmospheric pressure needed for the reaction, extend catalyst durability, resulting in a high-quality product | MnO2/Al2O3, Ag-Mn/HZSM-5, BaTiO3, AgOx-MnOx/SMF, MnOx/SMF, BaTiO3/TiO2, Ag/TiO2, Cu-Mn/TiO2 | Frequent maintenance is required to ensure proper functioning, high operation cost | [67] |
Catalyst | Temperature | Pressure | Reactant (Inlet) | Type of Reactor | Conversion (%) | Ref. |
---|---|---|---|---|---|---|
(a) Sulphide catalysts | ||||||
NiMo/Al2O3 | 350 | 75 | Phenol | Batch | 55 | [129] |
NiMoS | 220 | 50 | Phenol | Batch | 84 | [118] |
NiMoS | 350 | 28 | Phenol | Batch | 96 | [118] |
NiS | 350 | 28 | Phenol | Batch | 35 | [118] |
MoS2 | 300 | 40 | 4-Methylphenol | Batch | 52 | [130] |
MoS2 | 300 | 40 | Guaiacol | Fixed bed | 100 | [62] |
CoMoS | 275 | 40 | p-cresol | Batch | 100 | [131] |
CoMoS | 300 | 40 | Guaiacol | Fixed bed | 95 | [62] |
CoMo/Al2O3 | 360 | 70 | p-cresol | Batch | 82 | [132] |
(b) Monometallic transition metal catalysts | ||||||
Ni@γ-Al2O3 | 300 | 5 | Phenol | batch | 100 | [133] |
Ni@SiO2 | 300 | 5 | Phenol | batch | 99 | [133] |
(c) Bimetallic transition metal catalysts | ||||||
Ni-5Fe@CNT | 400 | 3 | Guaiacol | Fixed-bed | 47.2 | [134] |
5Ni-Fe@CNT | 400 | 3 | Guaiacol | Fixed-bed | 96.8 | [134] |
CoMo | 400 | 2.8 | Guaiacol | Fixed-bed | 88.5 | [135] |
NiMo | 400 | 2.8 | Guaiacol | Fixed-bed | 99.9 | [136] |
NiMoW | 400 | 2.8 | Guaiacol | Fixed-bed | 99.6 | [136] |
CoMo | 250 | 5.5 | Guaiacol | Batch | 100 | [137] |
(d) Phosphide Catalysts | ||||||
CoP@SiO2 | 300 | 3 | Phenol | Fixed bed | 98 | [138] |
Co2P@SiO2 | 300 | 3 | Phenol | Fixed bed | 23 | [138] |
CoP2@SiO2 | 300 | 3 | Phenol | Fixed bed | 99 | [138] |
Advantages | Disadvantages | Ref. | |
---|---|---|---|
Sulphide Catalysts | Higher resistance to sulfur poisoning Lower cost Used widely in HDS and HDN industries | Higher deactivation rate and carbon deposition Needs continuous supply of H2S. Deactivated by water | [38] |
Monometallic Catalysts | Higher life-spin and stable performance Lower metallic loads. | High cost especially for Noble catalysts Intolerant for sulphur in the feed and high possibility of sulphur poisoning Deactivated by water. | [1] |
Bimetallic Catalysts | Promoting solvent-free HDO High HDO activity | Oxidization of transition metal | [139] |
Metal-oxide Catalysts | Oxyphilic nature Good stability and performance in HDO High availability Lower cost compared to noble metals | Coke deactivation and easily oxidizable Has lower performance than the noble catalysts. Reduced and reactive active phase is needed | [1] |
Metal-phosphide catalysts | More selective than metal oxide Designing the structure and acid sites for HDO is important for higher efficiency | Higher possibility of phosphide generation Choosing the synthesis method is complicated and metal loading as well. | [101] |
Metal-carbide catalysts | Similar behaviour to noble catalysts High resistance to coke formation by formation of bimetallic High selectivity | Low stability | [1] |
Metal-nitride | Similar behaviour to noble catalysts | Less selective to deoxygenates. Need to reduce with H2/N2 to achieve high dispersion | [111] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shomal, R.; Zheng, Y. Development of Processes and Catalysts for Biomass to Hydrocarbons at Moderate Conditions: A Comprehensive Review. Nanomaterials 2023, 13, 2845. https://doi.org/10.3390/nano13212845
Shomal R, Zheng Y. Development of Processes and Catalysts for Biomass to Hydrocarbons at Moderate Conditions: A Comprehensive Review. Nanomaterials. 2023; 13(21):2845. https://doi.org/10.3390/nano13212845
Chicago/Turabian StyleShomal, Reem, and Ying Zheng. 2023. "Development of Processes and Catalysts for Biomass to Hydrocarbons at Moderate Conditions: A Comprehensive Review" Nanomaterials 13, no. 21: 2845. https://doi.org/10.3390/nano13212845
APA StyleShomal, R., & Zheng, Y. (2023). Development of Processes and Catalysts for Biomass to Hydrocarbons at Moderate Conditions: A Comprehensive Review. Nanomaterials, 13(21), 2845. https://doi.org/10.3390/nano13212845