Phonon Dominated Thermal Transport in Metallic Niobium Diselenide from First Principles Calculations
Abstract
1. Introduction
2. Methods
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Geim, A.K.; Novoselov, K.S. The Rise of Graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Geim, A.K. Status and Prospects. Science 2009, 324, 1530–1534. [Google Scholar] [CrossRef]
- Mi, X.Y.; Yu, X.; Yao, K.L.; Huang, X.; Yang, N.; Lü, J.T. Enhancing the Thermoelectric Figure of Merit by Low-Dimensional Electrical Transport in Phonon-Glass Crystals. Nano Lett. 2015, 15, 5229–5234. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.V.; Dubonos, S.V.; Firsov, A.A. Two-Dimensional Gas of Massless Dirac Fermions in Graphene. Nature 2005, 438, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Yan, R.; Simpson, J.R.; Bertolazzi, S.; Brivio, J.; Watson, M.; Wu, X.; Kis, A.; Luo, T.; Hight Walker, A.R.; Xing, H.G. Thermal Conductivity of Monolayer Molybdenum Disulfide Obtained from Temperature-Dependent Raman Spectroscopy. ACS Nano 2014, 8, 986–993. [Google Scholar] [CrossRef]
- Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712. [Google Scholar] [CrossRef]
- Sik Hwang, W.; Remskar, M.; Yan, R.; Protasenko, V.; Tahy, K.; Doo Chae, S.; Zhao, P.; Konar, A.; Xing, H.; Seabaugh, A.; et al. Transistors with Chemically Synthesized Layered Semiconductor WS2 Exhibiting 105 Room Temperature Modulation and Ambipolar Behavior. Appl. Phys. Lett. 2012, 101, 013107. [Google Scholar] [CrossRef]
- Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S.K.; Colombo, L. Electronics Based on Two-Dimensional Materials. Nat. Nanotechnol. 2014, 9, 768–779. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, G.; Yang, G.; Wang, C.; Wang, Y.X. Outstanding Thermoelectric Performances for Both P- and n-Type SnSe from First-Principles Study. J. Alloys Compd. 2015, 644, 615–620. [Google Scholar] [CrossRef]
- Singh, A.K.; Hennig, R.G. Computational Prediction of Two-Dimensional Group-IV Mono-Chalcogenides Computational Prediction of Two-Dimensional Group-IV Mono-Chalcogenides. Appl. Phys. Lett. 2016, 105, 042103. [Google Scholar] [CrossRef]
- Bernardi, M.; Ataca, C.; Palummo, M.; Grossman, J.C. Optical and Electronic Properties of Two-Dimensional Layered Materials. Nanophotonics 2017, 6, 479–493. [Google Scholar] [CrossRef]
- Britnell, L.; Ribeiro, R.M.; Eckmann, A.; Jalil, R.; Belle, B.D.; Mishchenko, A.; Kim, Y.; Gorbachev, R.V.; Georgiou, T.; Morozov, S.V.; et al. Strong Light-Matter Interactions Thin Films. Science 2013, 340, 1311–1314. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Yin, H.; Han, M.; Dai, Z.; Pang, H.; Zheng, Y.; Lan, Y.Q.; Bao, J.; Zhu, J. Two-Dimensional Tin Selenide Nanostructures for Flexible All-Solid-State Supercapacitors. ACS Nano 2014, 8, 3761–3770. [Google Scholar] [CrossRef]
- Fang, H.; Chuang, S.; Chang, T.C.; Takei, K.; Takahashi, T.; Javey, A. High-Performance Single Layered WSe 2 p-FETs with Chemically Doped Contacts. Nano Lett. 2012, 12, 3788–3792. [Google Scholar] [CrossRef]
- Larentis, S.; Fallahazad, B.; Tutuc, E. Field-Effect Transistors and Intrinsic Mobility in Ultra-Thin MoSe 2 Layers. Appl. Phys. Lett. 2012, 101, 223104. [Google Scholar] [CrossRef]
- Tritsaris, G.A.; Malone, B.D.; Kaxiras, E. Optoelectronic Properties of Single-Layer, Double-Layer, and Bulk Tin Sulfide: A Theoretical Study. J. Appl. Phys. 2013, 113, 1300–1307. [Google Scholar] [CrossRef]
- Zhang, L.-C.; Qin, G.; Fang, W.-Z.; Cui, H.-J.; Zheng, Q.-R.; Yan, Q.-B.; Su, G. SnSe Monolayer: Super-Flexible, Auxetic Material with Ultralow Lattice Thermal Conductivity and Ultrahigh Hole Mobility. Mater. Sci. arXiv 2015, arXiv:1505.04590. [Google Scholar]
- Cao, J.; Wang, Z.; Zhan, X.; Wang, Q.; Safdar, M.; Wang, Y.; He, J. Vertical SnSe Nanorod Arrays: From Controlled Synthesis and Growth Mechanism to Thermistor and Photoresistor. Nanotechnology 2014, 25, 105705. [Google Scholar] [CrossRef] [PubMed]
- Windmiller, J.R.; Wang, J. Wearable Electrochemical Sensors and Biosensors: A Review. Electroanalysis 2013, 25, 29–46. [Google Scholar] [CrossRef]
- Staley, N.E.; Wu, J.; Eklund, P.; Liu, Y.; Li, L.; Xu, Z. Electric Field Effect on Superconductivity in Atomically Thin Flakes of NbSe2. Phys. Rev. B 2009, 80, 184505. [Google Scholar] [CrossRef]
- Xi, X.; Wang, Z.; Zhao, W.; Park, J.-H.; Law, K.T.; Berger, H.; Forró, L.; Shan, J.; Mak, K.F. Ising Pairing in Superconducting NbSe2 Atomic Layers. Nat. Phys. 2016, 12, 139–143. [Google Scholar] [CrossRef]
- Xie, X.; Lin, D.; Zhu, L.; Li, Q.; Zong, J.; Chen, W.; Meng, Q.; Tian, Q.; Li, S.-C.; Xi, X.; et al. Charge Density Wave and Electron-Phonon Interaction in Epitaxial Monolayer NbSe2 Films. Chin. Phys. Lett. 2021, 38, 107101. [Google Scholar] [CrossRef]
- Xi, X.; Zhao, L.; Wang, Z.; Berger, H.; Forró, L.; Shan, J.; Mak, K.F. Strongly Enhanced Charge-Density-Wave Order in Monolayer NbSe2. Nat. Nanotechnol. 2015, 10, 765–769. [Google Scholar] [CrossRef] [PubMed]
- Hamill, A.; Heischmidt, B.; Sohn, E.; Shaffer, D.; Tsai, K.-T.; Zhang, X.; Xi, X.; Suslov, A.; Berger, H.; Forró, L.; et al. Two-Fold Symmetric Superconductivity in Few-Layer NbSe2. Nat. Phys. 2021, 17, 949–954. [Google Scholar] [CrossRef]
- Wei, M.; Lian, J.; Zhang, Y.; Wang, C.; Wang, Y.; Xu, Z. Layer-Dependent Optical and Dielectric Properties of Centimeter-Scale PdSe2 Films Grown by Chemical Vapor Deposition. npj 2D Mater. Appl. 2022, 6, 1–8. [Google Scholar] [CrossRef]
- Li, H.; Ji, A.; Zhu, C.; Cui, L.; Mao, L.-F. Layer-Dependent Bandgap and Electrical Engineering of Molybdenum Disulfide. J. Phys. Chem. Solids 2020, 139, 109331. [Google Scholar] [CrossRef]
- Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D.R.; Cheng, R.; Seyler, K.L.; Zhong, D.; Schmidgall, E.; McGuire, M.A.; Cobden, D.H.; et al. Layer-Dependent Ferromagnetism in a van Der Waals Crystal down to the Monolayer Limit. Nature 2017, 546, 270–273. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Xing, J.; Jiang, Z.; Guo, Y.; Jiang, X.; Qi, Y.; Zhao, J. Layer-Dependent Magnetic Phase Diagram in FenGeTe2 (3 ≤ n ≤ 7) Ultrathin Films. Commun. Phys. 2022, 5, 140. [Google Scholar] [CrossRef]
- Wang, H.; Huang, X.; Lin, J.; Cui, J.; Chen, Y.; Zhu, C.; Liu, F.; Zeng, Q.; Zhou, J.; Yu, P.; et al. High-Quality Monolayer Superconductor NbSe2 Grown by Chemical Vapour Deposition. Nat. Commun. 2017, 8, 394. [Google Scholar] [CrossRef]
- Zhu, T.; Litwin, P.M.; Rosul, M.G.; Jessup, D.; Akhanda, M.S.; Tonni, F.F.; Krylyuk, S.; Davydov, A.V.; Reinke, P.; McDonnell, S.J.; et al. Transport Properties of Few-Layer NbSe2: From Electronic Structure to Thermoelectric Properties. Mater. Today Phys. 2022, 27, 100789. [Google Scholar] [CrossRef]
- Lien, H.-H. Thermal Conductivity of Thin Film Niobium Diselenide from Temperature-Dependent Raman. Master’s Thesis, Cornell University, Ithaca, NY, USA, 2017. [Google Scholar]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef]
- Lindsay, L. First Principles Peierls-Boltzmann Phonon Thermal Transport: A Topical Review. Nanoscale Microscale Thermophys. Eng. 2016, 20, 67–84. [Google Scholar] [CrossRef]
- Li, W.; Carrete, J.; Katcho, N.A.; Mingo, N. ShengBTE: A Solver of the Boltzmann Transport Equation for Phonons. Comput. Phys. Commun. 2014, 185, 1747–1758. [Google Scholar] [CrossRef]
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.; et al. QUANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum Simulations of Materials. J. Phys. Condens. Matter 2009, 21, 395502. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special Points for Brillouin-Zone Integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Baroni, S.; de Gironcoli, S.; Dal Corso, A.; Giannozzi, P. Phonons and Related Crystal Properties from Density-Functional Perturbation Theory. Rev. Mod. Phys. 2001, 73, 515–562. [Google Scholar] [CrossRef]
- Wu, X.; Lee, J.; Varshney, V.; Wohlwend, J.L.; Roy, A.K.; Luo, T. Thermal Conductivity of Wurtzite Zinc-Oxide from First-Principles Lattice Dynamics—A Comparative Study with Gallium Nitride. Sci. Rep. 2016, 6, 22504. [Google Scholar] [CrossRef]
- Wu, X.; Varshney, V.; Lee, J.; Pang, Y.; Roy, A.K.; Luo, T. How to Characterize Thermal Transport Capability of 2D Materials Fairly?-Sheet Thermal Conductance and the Choice of Thickness. Chem. Phys. Lett. 2017, 669, 233–237. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, X.; Luo, T. The Impact of Hydrogenation on the Thermal Transport of Silicene. 2D Mater. 2017, 4, 025002. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, X.; Varshney, V.; Lee, J.; Qin, G.; Hu, M.; Roy, A.K.; Luo, T. Bond Saturation Significantly Enhances Thermal Energy Transport in Two-Dimensional Pentagonal Materials. Nano Energy 2018, 45, 1–9. [Google Scholar] [CrossRef]
- Feng, T.; Lindsay, L.; Ruan, X. Four-Phonon Scattering Significantly Reduces Intrinsic Thermal Conductivity of Solids. Phys. Rev. B 2017, 96, 161201. [Google Scholar] [CrossRef]
- Han, Z.; Yang, X.; Li, W.; Feng, T.; Ruan, X. FourPhonon: An Extension Module to ShengBTE for Computing Four-Phonon Scattering Rates and Thermal Conductivity. Comput. Phys. Commun. 2022, 270, 108179. [Google Scholar] [CrossRef]
- Liu, Z.; Jiang, M.; Luo, T. Leverage electron properties to predict phonon properties via transfer learning for semiconductors. Sci. Adv. 2020, 6, eabd1356. [Google Scholar] [CrossRef]
- Qin, G.; Qin, Z.; Fang, W.-Z.; Zhang, L.-C.; Yue, S.-Y.; Yan, Q.-B.; Hu, M.; Su, G. Diverse Anisotropy of Phonon Transport in Two-Dimensional IV-VI Compounds: A First-Principles Study. Nanoscale 2016, 8, 11306–11319. [Google Scholar] [CrossRef]
- Majumdar, A.; Chowdhury, S.; Ahuja, R. Ultralow Thermal Conductivity and High Thermoelectric Figure of Merit in Two-Dimensional Thallium Selenide. ACS Appl. Energy Mater. 2020, 3, 9315–9325. [Google Scholar] [CrossRef]
- Gu, X.; Li, B.; Yang, R. Layer Thickness-Dependent Phonon Properties and Thermal Conductivity of MoS2. J. Appl. Phys. 2016, 119, 085106. [Google Scholar] [CrossRef]
- Jain, A.; McGaughey, A.J.H. Thermal Transport by Phonons and Electrons in Aluminum, Silver, and Gold from First Principles. Phys. Rev. B 2016, 93, 081206. [Google Scholar] [CrossRef]
- Chen, G. Nanoscale Energy Transport and Conversion; Oxford University Press, Inc.: New York, NY, USA, 2005; ISBN 13-978-0-19-515942-4. [Google Scholar]
- Yu, C.; Ouyang, Y.; Chen, J. A Perspective on the Hydrodynamic Phonon Transport in Two-Dimensional Materials. J. Appl. Phys. 2021, 130, 010902. [Google Scholar] [CrossRef]
- Liu, Z.; Morales-Ferreiro, J.O.; Luo, T. First-Principles Study of Thermoelectric Properties of Blue Phosphorene. Appl. Phys. Lett. 2018, 113, 063903. [Google Scholar] [CrossRef]
- Sharma, P.C.; Dubey, K.S.; Verma, G.S. Three-Phonon Scattering and Guthrie’s Limits for Its Temperature Dependence. Phys. Rev. B 1971, 4, 1306–1313. [Google Scholar] [CrossRef]
- Srivastava, G.P. Calculation of Lattice Thermal Conductivity of Ge from 4 to 900 K. Philos. Mag. 1976, 34, 795–809. [Google Scholar] [CrossRef]
- Luo, T.; Chen, G. Nanoscale Heat Transfer—From Computation to Experiment. Phys. Chem. Chem. Phys. 2013, 15, 3389. [Google Scholar] [CrossRef]
- Lindsay, L.; Broido, D.A. Three-Phonon Phase Space and Lattice Thermal Conductivity in Semiconductors. J. Phys. Condens. Matter 2008, 20, 165209. [Google Scholar] [CrossRef]
- Wang, K.; Ren, K.; Zhang, D.; Cheng, Y.; Zhang, G. Phonon Properties of Biphenylene Monolayer by First-Principles Calculations. Appl. Phys. Lett. 2022, 121, 042203. [Google Scholar] [CrossRef]
- Zhao, L.-D.; Lo, S.-H.; Zhang, Y.; Sun, H.; Tan, G.; Uher, C.; Wolverton, C.; Dravid, V.P.; Kanatzidis, M.G. Ultralow Thermal Conductivity and High Thermoelectric Figure of Merit in SnSe Crystals. Nature 2014, 508, 373–377. [Google Scholar] [CrossRef]
- He, Y.; Hashimoto, M.; Song, D.; Chen, S.-D.; He, J.; Vishik, I.M.; Moritz, B.; Lee, D.-H.; Nagaosa, N.; Zaanen, J.; et al. Rapid Change of Superconductivity and Electron-Phonon Coupling through Critical Doping in Bi-2212. Science 2018, 362, 62–65. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Tong, Z.; Zhang, X.; Bao, H. Thermal Conductivity and Lorenz Ratio of Metals at Intermediate Temperatures with Mode-Level First-Principles Analysis. Phys. Rev. B 2020, 102, 174306. [Google Scholar] [CrossRef]
- Li, S.; Tong, Z.; Shao, C.; Bao, H.; Frauenheim, T.; Liu, X. Anomalously Isotropic Electron Transport and Weak Electron–Phonon Interactions in Hexagonal Noble Metals. J. Phys. Chem. Lett. 2022, 13, 4289–4296. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Luo, T. Thermal Transport in Superconducting Niobium Nitride: A First-Principles Study. Appl. Phys. Lett. 2021, 118, 043102. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Contreras, R.; Celentano, D.; Luo, T.; Liu, Z.; Morales-Ferreiro, J.O. Phonon Dominated Thermal Transport in Metallic Niobium Diselenide from First Principles Calculations. Nanomaterials 2023, 13, 315. https://doi.org/10.3390/nano13020315
Contreras R, Celentano D, Luo T, Liu Z, Morales-Ferreiro JO. Phonon Dominated Thermal Transport in Metallic Niobium Diselenide from First Principles Calculations. Nanomaterials. 2023; 13(2):315. https://doi.org/10.3390/nano13020315
Chicago/Turabian StyleContreras, René, Diego Celentano, Tengfei Luo, Zeyu Liu, and J. O. Morales-Ferreiro. 2023. "Phonon Dominated Thermal Transport in Metallic Niobium Diselenide from First Principles Calculations" Nanomaterials 13, no. 2: 315. https://doi.org/10.3390/nano13020315
APA StyleContreras, R., Celentano, D., Luo, T., Liu, Z., & Morales-Ferreiro, J. O. (2023). Phonon Dominated Thermal Transport in Metallic Niobium Diselenide from First Principles Calculations. Nanomaterials, 13(2), 315. https://doi.org/10.3390/nano13020315