TiO2/SnO2 Bilayer Electron Transport Layer for High Efficiency Perovskite Solar Cells
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, H.-H.; Liu, Q.-H.; Tsai, H.; Shrestha, S.; Su, L.-Y.; Chen, P.-T.; Chen, Y.-T.; Yang, T.-A.; Lu, H.; Chuang, C.-H.; et al. A Simple One-Step Method with Wide Processing Window for High-Quality Perovskite Mini-module Fabrication. Joule 2021, 5, 958–974. [Google Scholar] [CrossRef]
- Tong, G.; Li, H.; Li, D.; Zhu, Z.; Xu, E.; Li, G.; Yu, L.; Xu, J.; Jiang, Y. Dual-phase CsPbBr3-CsPb2Br5 Perovskite Thin Films via Vapour Deposition for High-performance Rigid and Flexible Photodetectors. Small 2018, 14, 1702523–1702530. [Google Scholar] [CrossRef]
- Chao, L.; Niu, T.; Gao, W.; Ran, C.; Song, L.; Chen, Y.; Huang, W. Solvent Engineering of the Precursor Solution toward Large-Area Production of Perovskite Solar Cells. Adv. Mater. 2021, 33, 2005410. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.; Seo, G.; Chua, M.; Park, T.; Lu, Y.; Rotermund, F.; Kim, Y.-K.; Moon, C.; Jeon, N.; Correa-Baena, J.-P.; et al. Efficient Perovskite Solar Cells via Improved Carrier Management. Nature 2021, 590, 587–593. [Google Scholar] [CrossRef]
- Yang, H.; Xu, E.; Wu, C.; Li, J.; Liu, B.; Hong, F.; Zhang, L.; Chang, Y.; Zhang, Y.; Tong, G.; et al. Bifunctional Interface Engineering by Oxidating Layered TiSe2 for High-Performance CsPbBr3 Solar Cells. ACS Appl. Energy Mater. 2022, 5, 8254–8261. [Google Scholar] [CrossRef]
- Tong, G.; Son, D.; Ono, L.; Liu, Y.; Hu, Y.; Zhang, H.; Jamshaid, A.; Qiu, L.; Liu, Z.; Qi, Y. Scalable Fabrication of >90 cm2 Perovskite Solar Modules with 1000 h Operational Stability Based on the Intermediate Phase Strategy. Adv. Energy Mater. 2021, 11, 2003712. [Google Scholar] [CrossRef]
- Werner, J.; Boyd, C.C.; Moot, T.; Wolf, E.J.; France, R.M.; Johnson, S.A.; van Hest, M.F.A.M.; Luther, J.M.; Zhu, K.; Berry, J.J.; et al. Learning from Existing Photovoltaic Technologies to Identify Alternative Perovskite Module Designs. Energy Environ. Sci. 2020, 13, 3393. [Google Scholar] [CrossRef]
- Liu, Z.; Qiu, L.; Ono, L.; He, S.; Hu, Z.; Jiang, M.; Tong, G.; Wu, Z.; Jiang, Y.; Son, D.-Y.; et al. A Holistic Approach to Interface Stabilization for Efficient Perovskite Solar Modules with over 2,000-hour Operational Stability. Nat. Energy 2020, 5, 596–604. [Google Scholar] [CrossRef]
- Wu, T.; Liu, X.; Luo, X.; Segawa, H.; Tong, G.; Zhang, Y.; Ono, L.K.; Qi, Y.B.; Han, L. Heterogeneous FASnI3 Absorber with Enhanced Electric Field for High-Performance Lead-Free Perovskite Solar Cells. Nano-Micro Lett. 2022, 14, 99. [Google Scholar] [CrossRef]
- Jeon, N.; Na, H.; Jung, E.; Yang, T.-Y.; Lee, Y.; Kim, G.; Shin, H.-W.; Seok, S.I.; Lee, J.; Seo, J. A Fluorene-Terminated Hole-transporting Material for Highly Efficient and Stable Perovskite Solar Cells. Nat. Energy 2018, 3, 682–689. [Google Scholar] [CrossRef]
- Lin, L.; Jones, T.; Wang, J.; Cook, A.; Pham, N.; Duffy, N.; Mihaylov, B.; Grigore, M.; Anderson, K.; Duck, B.; et al. Strategically Constructed Bilayer Tin (IV) Oxide as Electron Transport Layer Boosts Performance and Reduces Hysteresis in Perovskite Solar Cells. Small 2020, 16, 1901466. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Tong, G.; Xu, E.; Li, H.; Li, P.; Zhu, Z.; Tang, J.; Qi, Y.B.; Jiang, Y. Accelerating Hole Extraction by Inserting 2D Ti3C2-MXene Interlayer to All Inorganic Perovskite Solar Cells with Long-Term Stability. J. Mater. Chem. A 2019, 7, 20597–20603. [Google Scholar] [CrossRef]
- Wu, W.-Q.; Chen, D.; Caruso, R.; Cheng, Y.-B. Recent Progress in Hybrid Perovskite Solar Cells Based on N-type Materials. J. Mater. Chem. A 2017, 5, 10092–10109. [Google Scholar] [CrossRef]
- Tong, G.; Ono, L.; Liu, Y.; Zhang, H.; Bu, T.; Qi, Y. Up-Scalable Fabrication of SnO2 with Multifunctional Interface for High Performance Perovskite Solar Modules. Nano-Micro Lett. 2021, 13, 155. [Google Scholar] [CrossRef]
- Paik, M.; Lee, Y.; Yun, H.; Lee, S.; Hong, S.; Seok, S. TiO2 Colloid-Spray Coated Electron-Transporting Layers for Efficient Perovskite Solar Cells. Adv. Energy Mater. 2020, 10, 2001799. [Google Scholar] [CrossRef]
- Li, H.; Tong, G.; Chen, T.; Zhu, H.; Li, G.; Chang, Y.; Wang, L.; Jiang, Y. Interface Engineering Using Perovskite Derivative-Phase for Efficient and Stable CsPbBr3-Solar Cells. J. Mater. Chem. A 2018, 6, 14225. [Google Scholar] [CrossRef]
- Wang, P.; Li, R.; Chen, B.; Hou, F.; Zhang, J.; Zhao, Y.; Zhang, X. Gradient Energy Alignment Engineering for Planar Perovskite Solar Cells with Efficiency Over 23%. Adv. Mater. 2020, 32, 1905766. [Google Scholar] [CrossRef] [PubMed]
- Wojciechowski, K.; Stranks, S.; Abate, A.; Sadoughi, G.; Sadhanala, A.; Kopidakis, N.; Rumbles, G.; Li, C.-Z.; Friend, R.; Jen, A.-Y.; et al. Heterojunction Modification for Highly Efficient Organic–Inorganic Perovskite Solar Cells. ACS Nano 2014, 8, 12701–12709. [Google Scholar] [CrossRef]
- Shin, S.; Yeom, E.; Yang, W.; Hur, S.; Kim, M.; Im, J.; Seo, J.; Noh, J.; Seok, S. Colloidally Prepared La-doped BaSnO3 Electrodes for Efficient, Photostable Perovskite Solar Cells. Science 2017, 356, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Zhang, X.; You, J. SnO2: A Wonderful Electron Transport Layer for Perovskite Solar Cells. Small 2018, 14, 1801154. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhang, L.; Wang, H.; Yang, X.; Meng, J.; Liu, H.; Yin, Z.; Wu, J.; Zhang, X.; You, J. Enhanced Electron Extraction Using SnO2 for High-Efficiency Planar-Structure HC(NH2)2PbI3-Based Perovskite Solar Cells. Nat. Energy 2016, 2, 16177. [Google Scholar] [CrossRef]
- Deng, K.; Chen, Q.; Li, L. Modification Engineering in SnO2 Electron Transport Layer toward Perovskite Solar Cells: Efficiency and Stability. Adv. Funct. Mater. 2020, 30, 2004209. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, H.; Shi, J.; Dong, J.; Luo, Y.; Li, D.; Meng, Q. Highly Efficient Planar Perovskite Solar Cells with a TiO2/ZnO Electron Transport Bilayer. J. Mater. Chem. A 2015, 3, 19288–19293. [Google Scholar] [CrossRef]
- Bu, T.; Li, J.; Zheng, F.; Chen, W.; Wen, X.; Ku, Z.; Peng, Y.; Zhong, J.; Cheng, Y.; Huang, F. Universal Passivation Strategy to Slot-Die Printed SnO2 for Hysteresis-Free Efficient Flexible Perovskite Solar Module. Nat. Commun. 2018, 9, 4609. [Google Scholar] [CrossRef]
- Zhu, P.; Gu, S.; Luo, X.; Gao, Y.; Li, S.; Zhu, J.; Tan, H. Simultaneous Contact and Grain-Boundary Passivation in Planar Perovskite Solar Cells Using SnO2-KCl Composite Electron Transport Layer. Adv. Energy Mater. 2019, 10, 1903083. [Google Scholar] [CrossRef]
- Bu, T.; Li, J.; Li, H.; Tian, C.; Su, J.; Tong, G.; Ono, L.K.; Wang, C.; Lin, Z.; Chai, N.; et al. Lead Halide-Templated Crystallization of Methylamine-Free Perovskite for Efficient Photovoltaic Modules. Science 2021, 378, 1327–1332. [Google Scholar] [CrossRef] [PubMed]
- Bi, H.; Liu, B.; He, D.; Bai, L.; Wang, W.; Zang, Z.; Chen, J. Interfacial Defect Passivation and Stress Release by Multifunctional KPF6 Modification for Planar Perovskite Solar Cells with Enhanced Efficiency and Stability. Chem. Eng. J. 2021, 418, 129375. [Google Scholar] [CrossRef]
- Liu, Z.; Deng, K.; Hu, J.; Li, L. Coagulated SnO2 Colloids for High-Performance Planar Perovskite Solar Cells with Negligible Hysteresis and Improved Stability. Angew. Chem. 2019, 58, 11497–11504. [Google Scholar] [CrossRef]
- Tong, G.; Jiang, M.; Son, D.; Ono, L.; Qi, Y. 2D Derivative Phase Induced Growth of 3D All Inorganic Perovskite Micro–Nanowire Array Based Photodetectors. Adv. Funct. Mater. 2020, 30, 2002526. [Google Scholar] [CrossRef]
- Tong, G.; Chen, T.; Li, H.; Qiu, L.; Liu, Z.; Dang, Y.; Song, W.; Ono, L.K.; Jiang, Y.; Qi, Y.B. Phase Transition Induced Recrystallization and Low Surface Potential Barrier Leading to 10.91%-Efficient CsPbBr3 Perovskite Solar Cells. Nano Energy 2018, 65, 536–542. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, T.; Xiao, L.; Qin, P.; Yu, X.; Ma, L.; Xiong, L.; Li, H.; Chen, X.; Wang, Z.; et al. Multifunctional Potassium Hexafluorophosphate Passivate Interface Defects for High Efficiency Perovskite Solar Cells. Power Sources 2021, 488, 229451. [Google Scholar] [CrossRef]
- Tong, G.; Son, D.-Y.; Ono, L.; Kang, H.-B.; He, S.; Qiu, L.; Zhang, H.; Liu, Y.; Hieulle, J.; Qi, Y. Removal of Residual Compositions by Powder Engineering for High Efficiency Formamidinium-Based Perovskite Solar Cells with Operation Lifetime over 2000 h. Nano Energy 2021, 87, 106152. [Google Scholar] [CrossRef]
- Domanski, K.; Alharbi, E.; Hagfeldt, A.; Grätzel, M.; Tress, W. Systematic Investigation of the Impact of Operation Conditions on the Degradation Behaviour of Perovskite Solar Cells. Nat. Energy 2018, 3, 61–67. [Google Scholar] [CrossRef]
- Habisreutinger, S.; Noel, N.; Snaith, H. Hysteresis Index: A Figure without Merit for Quantifying Hysteresis in Perovskite Solar Cells. ACS Energy Lett. 2018, 3, 2472–2476. [Google Scholar] [CrossRef]
Sample | Scan Direction | Voc (V) | Jsc (mA/cm2) | FF | PCE (%) | HI |
---|---|---|---|---|---|---|
TiO2/SnO2 PSC | FS. | 1.001 | 22.73 | 0.672 | 15.29 | 1.18 |
RS. | 1.041 | 22.58 | 0.750 | 17.64 | ||
TiO2-PSCs | FS. | 0.905 | 22.06 | 0.519 | 10.37 | 1.51 |
RS. | 1.012 | 22.06 | 0.724 | 16.16 |
Sample | Scan Direction | Voc (V) | Jsc (mA/cm2) | FF | PCE (%) |
---|---|---|---|---|---|
TiO2/SnO2 PSC | FS. | 0.985 ± 0.010 | 22.17 ± 0.34 | 0.626 ± 0.039 | 13.68 ± 1.04 |
RS. | 1.029 ± 0.007 | 22.16 ± 0.27 | 0.709 ± 0.028 | 16.18 ± 0.78 | |
TiO2-PSCs | FS. | 0.917 ± 0.018 | 22.11 ± 0.40 | 0.5090 ± 0.040 | 10.33 ± 0.88 |
RS. | 1.003 ± 0.016 | 22.01 ± 0.43 | 0.707 ± 0.014 | 15.61 ± 0.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Li, L.; Shen, S.; Wang, F. TiO2/SnO2 Bilayer Electron Transport Layer for High Efficiency Perovskite Solar Cells. Nanomaterials 2023, 13, 249. https://doi.org/10.3390/nano13020249
Sun X, Li L, Shen S, Wang F. TiO2/SnO2 Bilayer Electron Transport Layer for High Efficiency Perovskite Solar Cells. Nanomaterials. 2023; 13(2):249. https://doi.org/10.3390/nano13020249
Chicago/Turabian StyleSun, Xiaolin, Lu Li, Shanshan Shen, and Fang Wang. 2023. "TiO2/SnO2 Bilayer Electron Transport Layer for High Efficiency Perovskite Solar Cells" Nanomaterials 13, no. 2: 249. https://doi.org/10.3390/nano13020249
APA StyleSun, X., Li, L., Shen, S., & Wang, F. (2023). TiO2/SnO2 Bilayer Electron Transport Layer for High Efficiency Perovskite Solar Cells. Nanomaterials, 13(2), 249. https://doi.org/10.3390/nano13020249