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Abstract: The electron transport layer (ETL) has been extensively investigated as one of the important
components to construct high-performance perovskite solar cells (PSCs). Among them, inorganic
semiconducting metal oxides such as titanium dioxide (TiO2), and tin oxide (SnO2) present great
advantages in both fabrication and efficiency. However, the surface defects and uniformity are
still concerns for high performance devices. Here, we demonstrated a bilayer ETL architecture
PSC in which the ETL is composed of a chemical-bath-deposition-based TiO2 thin layer and a spin-
coating-based SnO2 thin layer. Such a bilayer-structure ETL can not only produce a larger grain
size of PSCs, but also provide a higher current density and a reduced hysteresis. Compared to the
mono-ETL PCSs with a low efficiency of 16.16%, the bilayer ETL device features a higher efficiency
of 17.64%, accomplished with an open-circuit voltage of 1.041 V, short-circuit current density of
22.58 mA/cm2, and a filling factor of 75.0%, respectively. These results highlight the unique potential
of TiO2/SnO2 combined bilayer ETL architecture, paving a new way to fabricate high-performance
and low-hysteresis PSCs.

Keywords: perovskite solar cells; electron transport layer; low hysteresis; SnO2; TiO2

1. Introduction

The high-efficiency, low-cost and facile fabrication process of halide perovskite solar
cells (PSCs) have attracted tremendous attention in the field of photovoltaics in the past
decade [1–5] and been regarded as the most promising substitute for traditional silicon (Si)
and copper indium gallium selenide (CIGS) solar cells [6–8]. The sandwich structure of
hybrid organic-inorganic based PSCs includes the electron transport layer (ETL), perovskite
absorber layer, hole transport layer (HTL) and electrodes. Among them, ETL and HTL
are used for the electron and hole extraction, respectively. However, the Spiro-OMeTAD
are widely used as HTL in PSCs because of the simple synthesis, high carrier mobility
and suitable valance band. The HTL are always fabricated by spin-coating on the top
of a perovskite absorber layer with a dense and uniform film. In contrast, the ETL in
PSCs is usually fabricated in a planar and/or mesoporous structure under the perovskite
absorber layer [9–11]. The surface quality of ETL can substantially influence the deposition
of perovskite film. Therefore, the electron transport layer and the corresponding interface of
ETL/perovskite are significantly important parts to fabricate high-quality PSCs. Titanium
dioxide (TiO2) and/or tin oxide (SnO2) thin films have been extensively investigated as an
effective ETL in the PSCs, which can be fabricated by several different methods such as
spin-coating, sputtering and chemical bath deposition (CBD) [12–16], to pursue a higher
performance device.

Due to the facile planar configuration of PSCs, fabricating uniform, and compact ETL
thin layer, it is imperative to pursue high performance. The conventional spin-coating
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method shows a facile and efficient way to fabricate the TiO2-ETL. However, the uneven
distribution of TiO2 nanoparticles result in the carrier accumulation between perovskite
(PVSK) and the ETL interface and an insufficient carrier extraction, leading to a low
efficiency of resultant device [17,18]. Moreover, the large hysteresis of TiO2-ETL also
impedes the further application of TiO2 in the PSCs [19]. Alternatively, SnO2 presents a
reduced hysteresis, high carrier mobility and good energy level towards perovskite, which
can greatly improve the performance of PSCs [20–22]. For example, You et al. proposed
SnO2 as a planar ETL in the PSCs, which not only reduces the energy barrier between
ETL/PVSK, but also reduces the hysteresis of devices, resulting in a high performance
PSC with a champion PCE of 20.5% [21]. However, uniformity of SnO2 nanoparticles is
still a concern for the device fabrication because of its uneven distribution by spin-coating
technique. Therefore, high-quality ETL plays a crucial role in the fabrication of devices,
which paves a promising way for high-efficiency PSCs. To address this issue, Xu et al.
introduced a bilayer ETL of TiO2/ZnO thin layers into PSCs, which produces a compact
interfacial layer to avoid direct contact between the FTO substrate and PVSK, leading to a
reduced carrier accumulation at ETL/PVSK interface [23].

In this work, we propose a bilayer of ETLs that is composed of a CBD TiO2 layer
and a spin-coated SnO2 layer. The presence of the SnO2 thin layer on the top surface of
CBD TiO2 film can provide a higher current density and reduce the hysteresis of PSCs
simultaneously. In addition, the diffusion of the K ion from SnO2 can significantly improve
the crystallinity of grains in the perovskite films. On the basis of this bilayer strategy, a
higher power conversion efficiency (PCE) of 17.64% was achieved in comparison with the
mono-TiO2 ETL based PSCs with a PCE of 16.16%.

2. Materials and Methods

Materials: All reagents were used as received without further purification. Methylam-
monium iodide (MAI), methylammonium bromide (MABr), methylammonium chloride
(MACl), formamidinium iodide (FAI), lead(II) iodide (PbI2) and 2,2′,7,7′-tetrakis(N,N-di-p-
methoxyphenylamine)9,9′-spirobifluorene (Spiro-OMeTAD) (99.5%) were purchased from
Xi’an Polymer Light Technology (Xi’an, China). Dimethylformamide (DMF), dimethyl sul-
foxide (DMSO), isopropanol (IPA), chlorobenzene (CB), and titanium tetrachloride (TiCl4)
were purchased from Sigma-Aldrich (Milwaukee, Germany).

Device Fabrication: The cleaned fluorine-doped tin oxide (FTO) substrates are treated
using UV-ozone for 60 min. Then, the TiO2 thin layer was prepared by using the CBD
method and the SnO2 thin layer was fabricated with spin-coating technologies, as shown
in Figure 1. First, 2 M aqueous TiCl4 mother solution was prepared by dropping TiCl4 into
distilled water. During the preparation, the mother solution was continuously stirred at a
low temperature of around 0 ◦C. The as-prepared TiCl4 mother solution was stored in the
refrigerator (<10 ◦C). Second, the as-prepared TiCl4 mother solution was diluted to a 0.2 M
TiCl4 solution. The cleaned FTO substrates were placed vertically in the glassware. Then,
300 mL of 0.2 M TiCl4 solution was poured into the glassware. The glassware was put
into an oven with a temperature of 75 ◦C. After 1 h heating, the glassware was taken out
followed by rinsing the FTO substrates several times using distilled water. Finally, the FTO
substrates were annealed at a high temperature of 450 ◦C for 30 min. The FTO substrates
were washed by the acetone, distilled water, and ethyl alcohol for 20 min, respectively.
Before the deposition of TiO2 thin films, the FTO substrates are treated by using UV-ozone
for 60 min. SnO2 films were prepared by spin-coating Alfa Aesar SnO2 (diluted by H2O
to 3%) at a speed of 3500 rpm for 30 s. The perovskite films were deposited by a two-step
spin-coating method. Specifically, 1.35 M PbI2 and 0.0675 M CsI were dissolved in organic
solvent (DMF/DMSO = 19:1). The PbI2 precursor solution was stirred at a temperature of
70 ◦C for 60 min. The mixed MAFA based organic cation precursor solution was prepared
by dissolving 200 mg FAI, 100 mg MAI, 25 mg MABr and 25 mg MACl dissolved in 5 mL
isopropanol. The PbI2 precursor solution was first spin-coated at a speed of 3000 rpm for
30 s. The MA/FA cation solution was spin-coated at 3000 rpm for 30s. After annealing at
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150 ◦C for 10 min, the perovskite film of Cs0.05FA0.54MA0.41Pb(I0.98Br0.02)3 was obtained.
The hole transport layer of the spiro-OMeTAD film was deposited by spin-coating the
spiro-OMeTAD solution at a speed of 3500 rpm for 25 s. Finally, 80 nm Au film was
deposited as a counter electrode by thermal evaporation.
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Figure 1. Schematic illustration of the bilayer of ETLs (TiO2 and SnO2 films) and perovskite films
fabricated by chemical bath deposition and spin-coating.

Device Characterization: The diffraction data of perovskites are collected by using
a Bruker D8 Discover diffractometer (Bruker AXS) from 10◦ to 60◦. Surface and cross-
section morphology images are recorded by a scanning electron microscope (SEM) (Helios
NanoLab G3). The TRPL results were collected by using the Hamamatsu equipment which
can provide an excitation wavelength of 450 nm. The photoluminescence (PL) spectra were
acquired by a JASCO FP-8500 spectrometer with an excitation wavelength of 450 nm. The
current-voltage (J-V) measurements were performed under one sun illumination (AM1.5G,
100 mW/cm2) by using a Keithley 2420. The devices were test by using a metal shadow
mask with a dimension of 0.3 × 0.3 cm2. The EQE spectra of the devices were characterized
by using Oriel IQE 200 equipment.

3. Results and Discussion

Figure 2a–d shows the top-view SEM images of the perovskite films fabricated on
the TiO2 and TiO2/SnO2 substrates, which clearly shows a larger grain size of perovskite
thin film based on the TiO2/SnO2 substrates, compared with that on the TiO2 substrates,
with an average value changing from ~380 nm to ~540 nm, which can be verified by the
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statistics of perovskite grain size based on the TiO2 and TiO2/SnO2 substrates, as presented
in Figure 2e,f. As is well-known, the commercial SnO2 colloid precursor is stabilized by
incorporating potassium hydroxide (KOH) [24]. The presence of K ion in the SnO2 will
diffuse into the perovskite thin film during the annealing process, which greatly enhances
the crystallinity of perovskite grains, and reduces the hysteresis of resultant devices [25–27].
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Furthermore, the phase structure of perovskite thin film deposited on the TiO2
and TiO2/SnO2 substrates was investigated by X-ray diffraction (XRD), as presented
in Figure 3a. The increase of XRD intensity (on the TiO2/SnO2 substrate) verifies that the
improved crystallinity of perovskites is accomplished with high absorption in a short-
wavelength region (as shown in Figure 3b).
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Figure 3. (a) XRD patterns, (b) absorption spectra, (c) PL spectra and (d) TRPL curves of the perovskite
films deposited on FTO/TiO2 and FTO/TiO2/SnO2 substrates.

In addition, the steady-state photoluminescence (PL) and time-resolved photolumi-
nescence (TRPL) experiments were carried out to investigate carrier transport behavior. As
seen in Figure 3c,d, the faster PL quenching of the perovskite thin film on the TiO2/SnO2
substrate indicates an enhanced electron extraction capability [28]. Moreover, the life-
times of the corresponding perovskite thin films were fitted by a biexponential decay
function [29,30]. The lifetime of the TiO2/SnO2-based sample is 15.4 ns, which is shorter
than that of the TiO2-based sample (22.2 ns), indicating a faster carrier extraction from the
perovskite thin film to TiO2/SnO2 electron transport layer [31].

Figure 4a,b shows the cross-section SEM images of devices fabricated on TiO2 and
TiO2/SnO2 substrates. The uniform and dense perovskite absorber layers not only ensure
the light harvest, but also effectively impede the carrier recombination in the devices. The
current density-voltage (J-V) curves of the devices were measured under standard AM
1.5 G illumination and are shown in Figure 5a and Table 1, while the key performance
parameters of open-circuit voltage (VOC), short-circuit current (JSC), fill factor (FF), power
conversion efficiency (PCE) and their statistical analyses are displayed in Figure 6a–d
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and Table 2, respectively. The PCE of 16.16% (VOC = 1.012 V, JSC = 22.06 mA/cm2 and
FF = 72.4%) and 10.37% (VOC = 0.905 V, JSC = 22.06 mA/cm2 and FF = 51.9%) under
reverse scan (RS) and forward scan (FS) indicate large hysteresis in the TiO2-based devices.
In contrast, the high PCE of 17.64% (VOC = 1.041 V, JSC = 22.58 mA/cm2 and FF = 75.0%)
and 15.29% (VOC = 1.001 V, JSC = 22.73 mA/cm2 and FF = 67.2%) under RS and FS were
obtained for TiO2/SnO2-based solar cells. The improved efficiency of TiO2/SnO2-based
solar cells can be attributed to a higher crystallinity of perovskite grains, which enhances
light capture and reduces the defects at grain boundaries [14,25]. The EQE spectra of
the corresponding devices were presented in Figure 5b. The improved EQE in the short
wavelength in terms of TiO2/SnO2-based device indicates faster carrier extraction and
reduced recombination at the TiO2/SnO2/PVSK interface [32]. Similarly, the enhanced EQE
at the long wavelength region also suggests that reduced defects and carrier recombination
in the perovskite bulk film, which can be explained by the enlarged grain size and improved
crystallinity of the perovskite grains [32]. As a result, the integrated JSC from EQE of
the TiO2/SnO2-based device is 21.59 mA/cm2, which is higher than that of the TiO2
based device (21.17 mA/cm2). Furthermore, the TiO2/SnO2-based device exhibited a
stable output (under initial maximum power point (MPP) voltage) with a PCE of 17.65%.
In contrast, the TiO2 based solar cell shows a poor output under MPP, yielding a low PCE of
15.74% (Figure 5c). More importantly, the hysteresis (hysteresis index (HI) = PCERS/PCEFS)
of the TiO2/SnO2-based devices is also reduced, compared to TiO2-based devices [32–34].
The HI of the TiO2-based PSC is 1.56, which is decreased to 1.15 by incorporating SnO2 into
devices to construct the TiO2/SnO2 bilayer ETL. Compared to TiO2 based devices with
a large hysteresis of 1.51, the improved efficiency and reduced HI of 1.18 for TiO2/SnO2-
based PSCs indicates the bilayer ETL can improve the reproducible fabrication and the
device performance.
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Table 1. Photovoltaics parameters of PSCs based on TiO2 and TiO2/SnO2 ETLs.

Sample Scan Direction Voc (V) Jsc (mA/cm2) FF PCE (%) HI

TiO2/SnO2 PSC
FS. 1.001 22.73 0.672 15.29

1.18RS. 1.041 22.58 0.750 17.64

TiO2-PSCs FS. 0.905 22.06 0.519 10.37
1.51RS. 1.012 22.06 0.724 16.16
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Table 2. Average photovoltaics parameters of PSCs based on TiO2 and TiO2/SnO2 ETLs.

Sample Scan Direction Voc (V) Jsc (mA/cm2) FF PCE (%)

TiO2/SnO2 PSC
FS. 0.985 ± 0.010 22.17 ± 0.34 0.626 ± 0.039 13.68 ± 1.04
RS. 1.029 ± 0.007 22.16 ± 0.27 0.709 ± 0.028 16.18 ± 0.78

TiO2-PSCs FS. 0.917 ± 0.018 22.11 ± 0.40 0.5090 ± 0.040 10.33 ± 0.88
RS. 1.003 ± 0.016 22.01 ± 0.43 0.707 ± 0.014 15.61 ± 0.40

4. Conclusions

In summary, we developed a bilayer electron transport layer by combining CBD-TiO2
and spin-coated SnO2 in the perovskite solar cells. The TiO2/SnO2 bilayer ETLs provide not
only a compact electron transport layer, but also accelerate the carrier transport in the solar
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cells. Furthermore, the presence of K ion from SnO2 can greatly improve the crystallinity of
perovskite thin film and significantly reduce the hysteresis of resultant devices. Compared
with the TiO2-based solar cells, the TiO2/SnO2-based solar cells demonstrate a higher PCE
of 17.64% and a lower hysteresis index. These results highlight the potential fabrication of
the TiO2/SnO2 bilayer electron transport layers and will be a beneficial strategy to fabricate
a high-quality perovskite thin film solar cell.
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