Advancements in Nanoparticle Deposition Techniques for Diverse Substrates: A Review
Abstract
:1. Introduction
2. Deposition of Nanoparticles on Ceramic Substrates
2.1. Deposition by Electron Gun Evaporation
2.2. Physical Vapor Deposition (PVD)
2.3. Plasma-Enhanced Chemical Vapor Deposition (PECVD)
3. Deposition of Nanomaterials on Polymeric Substrates
3.1. Simultaneous and Consecutive Electrochemical Deposition
3.1.1. Simultaneous
3.1.2. Consecutive
3.2. Chemical Vapor Deposition (CVD)
3.3. Electrophoretic Deposition
4. Deposition of Nanomaterials on Metallic Substrates
4.1. Laser Metal Deposition
4.2. Electrochemical Deposition
4.3. Atomic Layer Deposition (ALD)
5. Other Techniques for Nanomaterials Deposition
5.1. Thermophoretic Deposition
5.2. Supercritical Deposition
5.3. Spin Coating
5.4. Dip Coating
6. Overview of the Driving Forces for the Deposition and Transformation of Nanoparticles
- Surface Interaction Forces: Surface interaction forces govern the affinity of nanoparticles for a substrate’s surface. Van der Waals forces, electrostatic interactions, and capillary forces are common surface-driven mechanisms. Van der Waals forces arise from temporary fluctuations in electron distribution, leading to attractive interactions between particles and substrates. Electrostatic interactions, influenced by the charge distribution of particles and substrate, contribute to adsorption or repulsion. Due to surface tension gradients, capillary forces direct nanoparticles to specific locations on the substrate [107].
- Chemical Affinity: The chemical affinity between nanoparticles and substrates arises from the compatibility of their surface chemistry. In cases where nanoparticles and substrates possess complementary functional groups, chemical bonds can form, enhancing adhesion. Such interactions are vital in processes like plasma-enhanced chemical vapor deposition (PECVD) and atomic layer deposition (ALD), where precursor molecules chemically react on the substrate’s surface to yield conformal coatings [108,109].
- Electric Fields: Electric fields are potent tools for nanoparticle manipulation and deposition. Electrostatic deposition methods, such as electrophoretic deposition, exploit the attraction of charged nanoparticles to oppositely charged electrodes. This method allows for controlled positioning and uniform deposition of nanoparticles on substrates [110,111].
- Thermal Effects: Temperature gradients and localized heating can induce thermal motion of nanoparticles, influencing their deposition. Techniques like laser metal deposition and electron gun evaporation utilize thermal energy to vaporize or melt nanoparticles, which then condense onto the substrate surface [112,113].
- Fluid Dynamics: Fluid flow and dynamics play a significant role in spin- and dip-coating techniques. The controlled spreading and receding of liquid suspensions on substrates lead to an even distribution of nanoparticles. Fluid dynamics also underlies thermophoretic and supercritical deposition methods, where carrier gases or fluids carry nanoparticles to specific deposition sites [99,101,102,103].
- Kinetic Factors: Deposition kinetics determine the rate and extent of nanoparticle assembly. Factors like deposition time, precursor concentration, and growth rate influence the morphology and coverage of deposited layers. In techniques such as physical vapor deposition (PVD), carefully controlling these parameters is essential to achieve desired film characteristics [31,32,33].
7. Sustainable Approaches for Nanomaterial Synthesis
8. Potential Applications in the Deposition of Nanomaterials
8.1. Sensing
8.2. Anti-Icing
8.3. Antibacterial Power
8.4. Filters
9. Purity Requirements for Precursors Used in Deposition Techniques
10. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Leong, C.Y.; Wahab, R.A.; Lee, S.L.; Ponnusamy, V.K.; Chen, Y.-H. Current Perspectives of Metal-Based Nanomaterials as PhotocatalyticPhotocatalytic Antimicrobial Agents and Their Therapeutic Modes of Action: A Review. Environ. Res. 2023, 227, 115578. [Google Scholar] [CrossRef]
- Bratovcic, A. Different Applications of Nanomaterials and Their Impact on the Environment. Int. J. Mater. Sci. Eng. 2019, 5, 1–7. [Google Scholar]
- Laux, P.; Riebeling, C.; Booth, A.M.; Brain, J.D.; Brunner, J.; Cerrillo, C.; Creutzenberg, O.; Estrela-Lopis, I.; Gebel, T.; Johanson, G.; et al. Biokinetics of Nanomaterials: The Role of Biopersistence. NanoImpact 2017, 6, 69–80. [Google Scholar] [CrossRef]
- Gaffet, E. Nanomaterials: A Review of the Definitions, Applications, Health Effects. Available online: https://arxiv.org/abs/1106.2206 (accessed on 9 July 2023).
- Allied Market Research Nanomaterials Market Research 2031. Available online: https://www.alliedmarketresearch.com/nano-materials-market (accessed on 9 July 2023).
- Future Market Insights Nanomaterials Market to Exceed a Valuation of US$ 45 Billion by 2032 Attributing to Its Rising Use in Healthcare and Automotive Sectors. Available online: https://finance.yahoo.com/news/nanomaterials-market-exceed-valuation-us-150000849.html (accessed on 10 July 2023).
- Future Market Insights Nanomaterials Market. Available online: https://www.futuremarketinsights.com/reports/nanomaterials-market (accessed on 10 July 2023).
- Patra, J.K.; Baek, K.-H. Green Nanobiotechnology: Factors Affecting Synthesis and Characterization Techniques. J. Nanomater. 2014, 2014, 417305. [Google Scholar] [CrossRef]
- Govindaraman, L.T.; Arjunan, A.; Baroutaji, A.; Robinson, J.; Ramadan, M.; Olabi, A.-G. Nanomaterials Theory and Applications. In Encyclopedia of Smart Materials; Elsevier: Amsterdam, The Netherlands, 2022; pp. 302–314. [Google Scholar]
- Saleh, T.A. Nanomaterials for Pharmaceuticals Determination. Bioenergetics 2016, 5, 1000226. [Google Scholar] [CrossRef]
- Jeyaraj, M.; Gurunathan, S.; Qasim, M.; Kang, M.-H.; Kim, J.-H. A Comprehensive Review of the Synthesis, Characterization, and Biomedical Application of Platinum Nanoparticles. Nanomaterials 2019, 9, 1719. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.; Li, L.; Wang, T.; Wang, B.; Che, R.; Zhai, Y.; Zhang, J.; Li, W. Metal Selenide Nanomaterials for Biomedical Applications. Colloids Surf. B Biointerfaces 2023, 225, 113220. [Google Scholar] [CrossRef]
- European Commission Internal Market, Industry, Entrepreneurship and SMEs: Nanomaterials. Available online: https://single-market-economy.ec.europa.eu/sectors/chemicals/reach/nanomaterials_en (accessed on 10 July 2023).
- Grand View Research Nanomaterials Market Size, Share & Growth. Available online: https://www.grandviewresearch.com/industry-analysis/nanotechnology-and-nanomaterials-market (accessed on 10 July 2023).
- Bondavalli, P.; Pribat, D.; Legagneux, P.; Martin, M.-B.; Hamidouche, L.; Qassym, L.; Feugnet, G.; Trompeta, A.-F.; Charitidis, C.A. Deposition of Graphene and Related Nanomaterials by Dynamic Spray-Gun Method: A New Route to Implement Nanomaterials in Real Applications. J. Phys. Mater. 2019, 2, 032002. [Google Scholar] [CrossRef]
- Harish, V.; Ansari, M.M.; Tewari, D.; Gaur, M.; Yadav, A.B.; García-Betancourt, M.-L.; Abdel-Haleem, F.M.; Bechelany, M.; Barhoum, A. Nanoparticle and Nanostructure Synthesis and Controlled Growth Methods. Nanomaterials 2022, 12, 3226. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, P.; Fatima, F.; Kumar, A. Relevance of Nanomaterials in Food Packaging and Its Advanced Future Prospects. J. Inorg. Organomet. Polym. Mater. 2020, 30, 5180–5192. [Google Scholar] [CrossRef]
- Yoo, H.; Heo, K.; Ansari, M.H.R.; Cho, S. Recent Advances in Electrical Doping of 2D Semiconductor Materials: Methods, Analyses, and Applications. Nanomaterials 2021, 11, 832. [Google Scholar] [CrossRef] [PubMed]
- Diop, M.M.; Diaw, A.; Mbengue, N.; Ba, O.; Diagne, M.; Niasse, O.A.; Ba, B.; Sarr, J. Optimization and Modeling of Antireflective Layers for Silicon Solar Cells: In Search of Optimal Materials. Mater. Sci. Appl. 2018, 9, 705–722. [Google Scholar] [CrossRef]
- Chen, Y.; Fan, S.W.; Gao, G.Y. Design Ambipolar Conductivity on Wide-Gap Semiconductors: The Case of Al- and Na-Doped CaS. Mater. Sci. Semicond. Process. 2022, 151, 107024. [Google Scholar] [CrossRef]
- Aghababai Beni, A.; Jabbari, H. Nanomaterials for Environmental Applications. Results Eng. 2022, 15, 100467. [Google Scholar] [CrossRef]
- Wu, Q.; Miao, W.; Zhang, Y.; Gao, H.; Hui, D. Mechanical Properties of Nanomaterials: A Review. Nanotechnol. Rev. 2020, 9, 259–273. [Google Scholar] [CrossRef]
- Pokropivny, V.; Lohmus, R.; Hussainova, I.; Pokropivny, A.; Vlassov, S. Introduction in Nanomaterials and Nanotechnology, 1st ed.; University of Tartu, Ed.; University of Tartu: Tartu, Estonia, 2007; Volume 1. [Google Scholar]
- Dorval Dion, C.A.; Tavares, J.R. Photo-Initiated Chemical Vapor Deposition as a Scalable Particle Functionalization Technology: A Practical Review. Powder Technol. 2013, 239, 484–491. [Google Scholar] [CrossRef]
- Darghlou, S.J.; Kangarlou, H.; Razzazi, V. Effect of Vertical Deposition Angle on Structural and Optical Properties of Tantalum Oxide Nano Layers Deposited by Electron Gun Evaporation. Chin. J. Phys. 2021, 74, 226–238. [Google Scholar] [CrossRef]
- Nagi, C.S.; Ogin, S.L.; Mohagheghian, I.; Crean, C.; Foreman, A.D. Spray Deposition of Graphene Nanoplatelets for Modifying Interleaves in Carbon Fibre Reinforced Polymer Laminates. Mater. Des. 2020, 193, 108831. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, W.; Lu, G. Ordered ZnO Nanorod Array Films Prepared by Low Cost Electrochemical Deposition and Its Optical Properties. Mater. Lett. 2015, 138, 262–264. [Google Scholar] [CrossRef]
- Jiang, H.; Manolache, S.; Wong, A.C.L.; Denes, F.S. Plasma-Enhanced Deposition of Silver Nanoparticles onto Polymer and Metal Surfaces for the Generation of Antimicrobial Characteristics. J. Appl. Polym. Sci. 2004, 93, 1411–1422. [Google Scholar] [CrossRef]
- Bruno, L.; Urso, M.; Shacham-Diamand, Y.; Priolo, F.; Mirabella, S. Role of Substrate in Au Nanoparticle Decoration by Electroless Deposition. Nanomaterials 2020, 10, 2180. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, Z. Electron Beam Evaporation Deposition. In Advanced Nano Deposition Methods; Chemical Industry Press: Beijing, China, 2016; pp. 33–58. [Google Scholar] [CrossRef]
- Makhlouf, A.S.H. Current and Advanced Coating Technologies for Industrial Applications. In Nanocoatings and Ultra-Thin Films; Woodhead Publishing Ltd.: Cambridge, UK, 2011; pp. 3–23. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, W.; Wang, B.; Zheng, Y. Ultrathin Ferroelectric Films: Growth, Characterization, Physics and Applications. Materials 2014, 7, 6377–6485. [Google Scholar] [CrossRef] [PubMed]
- Saravanavel, G.; Honnali, S.K.; Lourdes, K.S.; John, S.; Gunasekhar, K.R. Study on the Thermoelectric Properties of Al-ZnO Thin-Film Stack Fabricated by Physical Vapour Deposition Process for Temperature Sensing. Sens. Actuators A Phys. 2021, 332, 113097. [Google Scholar] [CrossRef]
- Albu, C.; Eremia, S.A.V.; Veca, M.L.; Avram, A.; Popa, R.C.; Pachiu, C.; Romanitan, C.; Kusko, M.; Gavrila, R.; Radoi, A. Dataset on Large Area Nanocrystalline Graphite Film (NCG) Grown on SiO2 Using Plasma-Enhanced Chemical Vapour Deposition. Data Brief 2019, 24, 103923. [Google Scholar] [CrossRef] [PubMed]
- Said, N.; Khoo, Y.S.; Lau, W.J.; Gürsoy, M.; Karaman, M.; Ting, T.M.; Abouzari-Lotf, E.; Ismail, A.F. Rapid Surface Modification of Ultrafiltration Membranes for Enhanced Antifouling Properties. Membranes 2020, 10, 401. [Google Scholar] [CrossRef]
- Kangarlou, H.; Aghgonbad, M.M.; Barjisi, Z. Deposition Angle Dependence of Optical and Structural Properties of Titanium Nano-Layers. Optik 2013, 124, 107–112. [Google Scholar] [CrossRef]
- Darvizeh, A.; Luzi, A.; Amin, A.A.; Oliveira-Ogliari, A.; Ogliari, F.A.; Feitosa, V.P.; García-Esparza, M.A.; Pascual, A.; Sauro, S. In-Situ Nano-Silica Deposition and Air-Abrasion with Bioglass 45S5 or Aluminium Oxide: Effects on Methacrylate Bonding to Yttria-Tetragonal Zirconia Polycrystal. Int. J. Adhes. Adhes. 2015, 62, 32–39. [Google Scholar] [CrossRef]
- Moeinzadeh, S.; Jabbari, E. Nanoparticles and Their Applications. In Springer Handbook of Nanotechnology; Springer: Berlin/Heidelberg, Germany, 2017; pp. 335–361. [Google Scholar] [CrossRef]
- Kun, H.; Li, J.; Li, K.; Yan, N.; Bian, C.; Guan, Y.; Yang, Y.; Li, H. Effects of Temperature and Pressure on Chemical Vapour Deposition in Micro-Nano Porous Structure in Char Layer of Polymer Composites. Polym. Degrad. Stab. 2022, 196, 109816. [Google Scholar] [CrossRef]
- Li, H.; Liebscher, M.; Curosu, I.; Choudhury, S.; Hempel, S.; Davoodabadi, M.; Dinh, T.T.; Yang, J.; Mechtcherine, V. Electrophoretic Deposition of Nano-Silica onto Carbon Fiber Surfaces for an Improved Bond Strength with Cementitious Matrices. Cem. Concr. Compos. 2020, 114, 103777. [Google Scholar] [CrossRef]
- Zhou, X.; Yin, A.; Sheng, J.; Wang, J.; Chen, H.; Fang, Y.; Zhang, K. In Situ Deposition of Nano Cu2O on Electrospun Chitosan Nanofibrous Scaffolds and Their Antimicrobial Properties. Int. J. Biol. Macromol. 2021, 191, 600–607. [Google Scholar] [CrossRef]
- Pooyandeh, S.; Shahidi, S.; Khajehnezhad, A.; Mongkholrattanasit, R. In Situ Deposition of NiO Nano Particles on Cotton Fabric Using Sol–Gel Method- PhotocatalyticPhotocatalytic Activation Properties. J. Mater. Res. Technol. 2021, 12, 1–14. [Google Scholar] [CrossRef]
- Menazea, A.A.; Abdelbadie, S.A.; Ahmed, M.K. Manipulation of AgNPs Coated on Selenium/Carbonated Hydroxyapatite/ε-Polycaprolactone Nanofibrous via Pulsed Laser Deposition for Wound Healing Applications. Appl. Surf. Sci. 2020, 508, 145299. [Google Scholar] [CrossRef]
- McDonnell, K.A.; English, N.J.; Stallard, C.P.; Rahman, M.; Dowling, D.P. Fabrication of Nano-Structured TiO2 Coatings Using a Microblast Deposition Technique. Appl. Surf. Sci. 2013, 275, 316–323. [Google Scholar] [CrossRef]
- Li, Z.S.; Lin, S.; Chen, Z.L.; Shi, Y.D.; Huang, X.M. In Situ Electro-Deposition of Pt Micro-Nano Clusters on the surface of {[PMo12O40]3−/PAMAM}n Multilayer Composite Films and Their Electrocatalytic Activities Regarding Methanol Oxidation. J. Colloid Interface Sci. 2012, 368, 413–419. [Google Scholar] [CrossRef]
- Karabiberoğlu, Ş.; Dursun, Z. Au-Pt Bimetallic Nanoparticles Anchored on Conducting Polymer: An Effective Electrocatalyst for Direct Electrooxidation of Sodium Borohydride in Alkaline Solution. Mater. Sci. Eng. B 2023, 288, 116158. [Google Scholar] [CrossRef]
- Thinakaran, S.; Loordhuswamy, A.M.; Venkateshwapuram Rengaswami, G.D. Electrophoretic Deposition of Chitosan/Nano Silver Embedded Micro Sphere on Centrifugal Spun Fibrous Matrices—A Facile Biofilm Resistant Biocompatible Material. Int. J. Biol. Macromol. 2020, 148, 68–78. [Google Scholar] [CrossRef]
- Zhai, W.; Wu, N.; Zhou, W. Laser Metal Deposition of Low Carbon 410L Stainless Steel and Heat Treatment. Mater. Sci. Eng. A 2023, 872, 144987. [Google Scholar] [CrossRef]
- Zhang, Q.; Sun, W.; Xu, S.; Zhang, X.; Wang, J.; Si, C. Nano-TiB Whiskers Reinforced Ti–6Al–4 V Matrix Composite Fabricated by Direct Laser Deposition: Microstructure and Mechanical Properties. J. Alloys Compd. 2022, 922, 166171. [Google Scholar] [CrossRef]
- Augello, C.; Liu, H. Surface Modification of Magnesium by Functional Polymer Coatings for Neural Applications. Surf. Modif. Magnes. Its Alloys Biomed. Appl. 2015, 2, 335–353. [Google Scholar] [CrossRef]
- Leskelä, M.; Niinistö, J.; Ritala, M. Atomic Layer Deposition. Compr. Mater. Process. 2014, 4, 101–123. [Google Scholar] [CrossRef]
- George, S.M. Atomic Layer Deposition: An Overview. Chem. Rev. 2010, 110, 111–131. [Google Scholar] [CrossRef] [PubMed]
- Hsu, S.-H.; Liao, H.-T.; Chen, R.-S.; Chiu, S.-C.; Tsai, F.-Y.; Lee, M.-S.; Hu, C.-Y.; Tseng, W.-Y. The Influence on Surface Characteristic and Biocompatibility of Nano-SnO2-Modified Titanium Implant Material Using Atomic Layer Deposition Technique. J. Formos. Med. Assoc. 2022, 122, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, T.; Tokuda, N.; Makino, Y.; Tsurui, A.; Ieki, R.; Kojima, R.; Liu, M.; Mahiko, T.; Nishikawa, M. Electrostatic Layer-by-Layer Deposition of Diamond Nanoparticles onto Substrate Surfaces. Carbon Trends 2022, 9, 100202. [Google Scholar] [CrossRef]
- Al-Masoodi, A.H.H.; Goh, B.T.; Al-Masoodi, A.H.H.; Majid, W.H.B.A. Deposition of Silver Nanoparticles on Indium Tin Oxide Substrates by Plasma-Assisted Hot-Filament Evaporation. In Thin Films; IntechOpen: Rijeka, Croatia, 2020. [Google Scholar] [CrossRef]
- Vanpariya, A.; Lellala, K.; Bhagat, D.; Mukhopadhyay, I. Electrochemical Deposition of Si Nanospheres from Water Contaminated Ionic Liquid at Room Temperature: Structural Evolution and Growth Mechanism. J. Electroanal. Chem. 2022, 910, 116175. [Google Scholar] [CrossRef]
- Wu, H.; Song, J.; He, Y.; Wang, S.; Lei, L.; Wen, J.; Gu, A.; Zhang, H.; Boi, F.S. Magnetic Coupling in Cm-Scale Buckypapers of Self-Organized Fe/Fe3C-Filled Carbon Nano-Onions: A Controlled Chemical Vapour Deposition Approach. Diam. Relat. Mater. 2022, 130, 109503. [Google Scholar] [CrossRef]
- Xi, X.; Chen, B.; Tan, C.; Song, X.; Dong, Z. Influence of Micron and Nano SiCp on Microstructure Evolution and Mechanical Properties of Laser Metal Deposition AlSi10Mg Alloy. J. Mater. Process. Technol. 2022, 306, 117609. [Google Scholar] [CrossRef]
- Xue, H.; Liang, Y.; Peng, H.; Wang, Y.; Lin, J. Additive Manufacturing of Micro/Nano Multiphase Synergistically Reinforced Ti-55Al-7.5Nb with a Reticular Boundary Precipitate via Direct Laser Deposition. Addit. Manuf. 2022, 58, 102989. [Google Scholar] [CrossRef]
- Vaez, S.; Emadi, R.; Sadeghzade, S.; Salimijazi, H.; Kharaziha, M. Electrophoretic Deposition of Chitosan Reinforced Baghdadite Ceramic Nanoparticles on the Stainless Steel 316L Substrate to Improve Biological and Physical Characteristics. Mater. Chem. Phys. 2022, 282, 125991. [Google Scholar] [CrossRef]
- Fuseini, M.; Zaghloul, M.M.Y. Investigation of Electrophoretic Deposition of PANI Nano Fibers as a Manufacturing Technology for Corrosion Protection. Prog. Org. Coat. 2022, 171, 107015. [Google Scholar] [CrossRef]
- Tan, Y.; Wei, Y.; Liang, K.; Wang, L.; Zhang, S. Facile In-Situ Deposition of Pt Nanoparticles on Nanopore Stainless Steel Composite Electrodes for High Active Hydrogen Evolution Reaction. Int. J. Hydrogen Energy 2021, 46, 26340–26346. [Google Scholar] [CrossRef]
- Fathyunes, L.; Khalili, V. Effect of Ultrasonic Waves on the Electrochemical Deposition of Calcium Phosphate/Nanosized Silica Composite Coating. J. Mater. Res. Technol. 2021, 14, 2345–2356. [Google Scholar] [CrossRef]
- Vetrivezhan, P.; Ayyanar, C.; Arunraj, P.V.; Vasanthkumar, P.; Ganesan, D. Electroless Deposition of Aluminium Alloy LM25 by SiC and Ni-P Nano Coating. Mater. Today Proc. 2021, 45, 6449–6453. [Google Scholar] [CrossRef]
- Parthiban, K.; Lakshmanan, P.; Palani, S.; Arumugam, A. Electroless Deposition of SiC Nano Coating on Aluminium Alloy and Evaluation of Wear Resistance and Electroless Characteristics. Mater. Today Proc. 2021, 46, 1096–1100. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, J.H.; Kang, Y.S.; Jang, K.T.; Im, J.; Seong, M.J. Evolution of Amorphous Carbon Films into Nanocrystalline Graphite with Increasing Growth Temperature in Plasma-Enhanced Chemical Vapor Deposition. Curr. Appl. Phys. 2021, 23, 52–56. [Google Scholar] [CrossRef]
- Sammaiah, P.; Sneha, M.; Khaseem, M.; Sudheer Kumar, N. Effect of Heat Treatment & Machining Process for Deposition of Al2O3 Nano Particles on Steel. Mater. Today Proc. 2018, 5, 6453–6460. [Google Scholar] [CrossRef]
- Kini, A.R.; Maischner, D.; Weisheit, A.; Ponge, D.; Gault, B.; Jägle, E.A.; Raabe, D. In-Situ Synthesis via Laser Metal Deposition of a Lean Cu–3.4Cr–0.6Nb (At%) Conductive Alloy Hardened by Cr Nano-Scale Precipitates and by Laves Phase Micro-Particles. Acta Mater. 2020, 197, 330–340. [Google Scholar] [CrossRef]
- Hosseini, M.R.; Ahangari, M.; Johar, M.H.; Allahkaram, S.R. Optimization of Nano HA-SiC Coating on AISI 316L Medical Grade Stainless Steel via Electrophoretic Deposition. Mater. Lett. 2021, 285, 129097. [Google Scholar] [CrossRef]
- Raja, C.A.; Balakumar, S.; Anandkumar, B.; George, R.P.; Mudali, U.K. Formation of Bioactive Nano Hybrid Thin Films on Anodized Titanium via Electrophoretic Deposition Intended for Biomedical Applications. Mater. Today Commun. 2020, 25, 101666. [Google Scholar] [CrossRef]
- Sammaiah, P.; Vineetha, B.; Suresh, A.; Sushanth, C.; Kumar, N.S. Analysis of MgO Nano Particles and Its Deposition on Steel by Cold Spray Process. Mater. Today Proc. 2018, 5, 19262–19269. [Google Scholar] [CrossRef]
- Wu, H.; He, D.; Wang, Y. Electrode Materials of Cobalt@Nitrogen Doped Carbon Nano Rod/Reduced Graphene Oxide on Nickel Foam by Electrophoretic Deposition and 3D RGO Aerogel for a High-Performance Asymmetrical Supercapacitor. Electrochim. Acta 2020, 343, 136117. [Google Scholar] [CrossRef]
- Jimenez, M.J.M.; Antunes, V.; Cucatti, S.; Riul, A.; Zagonel, L.F.; Figueroa, C.A.; Wisnivesky, D.; Alvarez, F. Physical and Micro-Nano-Structure Properties of Chromium Nitride Coating Deposited by RF Sputtering Using Dynamic Glancing Angle Deposition. Surf. Coat. Technol. 2019, 372, 268–277. [Google Scholar] [CrossRef]
- Li, J.; Hui, L.; Zhang, W.; Lu, J.; Yang, Y.; Feng, H. Scalable Production of Ultra Small TiO2 Nano Crystal/Activated Carbon Composites by Atomic Layer Deposition for Efficient Removal of Organic Pollutants. Adv. Powder Technol. 2021, 32, 728–739. [Google Scholar] [CrossRef]
- Zhang, X.; Meng, D.; Tang, Z.; Hu, D.; Geng, H.; Zheng, H.; Zang, S.; Yu, Z.; Peng, P. Preparation of Radial ZnSe-CdS Nano-Heterojunctions through Atomic Layer Deposition Method and Their Optoelectronic Applications. J. Alloys Compd. 2019, 777, 102–108. [Google Scholar] [CrossRef]
- Deepa, K.; Arthoba Nayaka, Y.; Purushothama, H.T.; Yathisha, R.O. Co-Deposition of Micro- and Nanosized SnO2 Particles in the Zn-Matrix Composite Coatings Produced from a Zn-Sulphate Bath by Electroplating. Chem. Data Collect. 2021, 32, 100657. [Google Scholar] [CrossRef]
- Song, K.Y.; Navamathavan, R.; Park, J.H.; Ra, Y.B.; Ra, Y.H.; Kim, J.S.; Lee, C.R. Selective Area Growth of GaN Nanowires Using Metalorganic Chemical Vapor Deposition on Nano-Patterned Si(111) Formed by the Etching of Nanosized Au Droplets. Thin Solid Film. 2011, 520, 126–130. [Google Scholar] [CrossRef]
- Das, S.; Guha, S.; Das, P.P.; Ghadai, R.K. Analysis of Morphological, Microstructural, Electrochemical and Nano Mechanical Characteristics of TiCN Coatings Prepared under N2 Gas Flow Rate by Chemical Vapour Deposition (CVD) Process at Higher Temperature. Ceram. Int. 2020, 46, 10292–10298. [Google Scholar] [CrossRef]
- Wang, H.; Wang, N.; Hang, T.; Li, M. Morphologies and Wetting Properties of Copper Film with 3D Porous Micro-Nano Hierarchical Structure Prepared by Electrochemical Deposition. Appl. Surf. Sci. 2016, 372, 7–12. [Google Scholar] [CrossRef]
- Chen, L.; Lai, J.S.; Fu, X.N.; Sun, J.; Ying, Z.F.; Wu, J.D.; Lu, H.; Xu, N. Growth of ZnSe Nanoneedles by Pulsed Laser Deposition and Their Application in Polymer/Inorganic Hybrid Solar Cells. Thin Solid Film. 2013, 529, 76–79. [Google Scholar] [CrossRef]
- He, S.; Zhang, S.; Lu, C.; Wu, G.; Yang, Y.; An, F.; Guo, J.; Li, H. Polyimide Nanocoating on Carbon Fibers by Electrophoretic Deposition. Colloids Surf. A Physicochem. Eng. Asp. 2011, 381, 118–122. [Google Scholar] [CrossRef]
- Zhuiykov, S.; Kawaguchi, T.; Hai, Z.; Karbalaei Akbari, M.; Heynderickx, P.M. Interfacial Engineering of Two-Dimensional Nanostructured Materials by Atomic Layer Deposition. Appl. Surf. Sci. 2017, 392, 231–243. [Google Scholar] [CrossRef]
- Yang, Y.; Cheng, Y.F. Electrolytic Deposition of Ni–Co–SiC Nanocoating for Erosion-Enhanced Corrosion of Carbon Steel Pipes in Oilsand Slurry. Surf. Coat. Technol. 2011, 205, 3198–3204. [Google Scholar] [CrossRef]
- Wang, W.; Ji, L.; Li, H.; Zhou, H.; Chen, J. Self-Organized Formation of Nano-Multilayer Structure in the Carbon-Copper Thin Film during Reactive Magnetron Sputtering Deposition Process. J. Alloys Compd. 2017, 722, 242–249. [Google Scholar] [CrossRef]
- Suresh, S.; Rangarajan, S.; Bera, S.; Krishnan, R.; Kalavathi, S.; Velmurugan, S. Electrochemical Characterization of Nano Zinc Ferrite Coating on Carbon Steel by Pulsed Laser Deposition. Thin Solid Film. 2016, 612, 250–258. [Google Scholar] [CrossRef]
- Xiong, Z.; Zheng, M.; Li, H.; Ma, L.; Shen, W. Fabrication and Optical Properties of Silicon Nanowire/Cu2O Nano-Heterojunctions by Electroless Deposition Technique. Mater. Lett. 2013, 112, 211–214. [Google Scholar] [CrossRef]
- Bouchkour, Z.; Tristant, P.; Thune, E.; Dublanche-Tixier, C.; Jaoul, C.; Guinebretière, R. Aluminum Nitride Nano-Dots Prepared by Plasma Enhanced Chemical Vapor Deposition on Si(111). Surf. Coat. Technol. 2011, 205, S586–S591. [Google Scholar] [CrossRef]
- Abdel-Gawad, S.A.; Sadik, M.A.; Shoeib, M.A. Preparation and Properties of a Novel Nano Ni-B-Sn by Electroless Deposition on 7075-T6 Aluminum Alloy for Aerospace Application. J. Alloys Compd. 2019, 785, 1284–1292. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, X.; Wang, W.; Zhang, J.; Zhang, L.; He, F.; Yang, J. Controllable Preparation of a Nano-Hydroxyapatite Coating on Carbon Fibers by Electrochemical Deposition and Chemical Treatment. Mater. Sci. Eng. C 2016, 63, 96–105. [Google Scholar] [CrossRef]
- Singh, S.; Meena, V.K.; Sharma, M.; Singh, H. Preparation and Coating of Nano-Ceramic on Orthopaedic Implant Material Using Electrostatic Spray Deposition. Mater. Des. 2015, 88, 278–286. [Google Scholar] [CrossRef]
- Bakhsheshi-Rad, H.R.; Hamzah, E.; Daroonparvar, M.; Saud, S.N.; Abdul-Kadir, M.R. Bi-Layer Nano-TiO2/FHA Composite Coatings on Mg–Zn–Ce Alloy Prepared by Combined Physical Vapour Deposition and Electrochemical Deposition Methods. Vacuum 2014, 110, 127–135. [Google Scholar] [CrossRef]
- Yazdani, A.; Soltanieh, M.; Aghajani, H.; Rastegari, S. A New Method for Deposition of Nanosized Titanium Nitride on Steels. Vacuum 2011, 86, 131–139. [Google Scholar] [CrossRef]
- Xu, Z.; Jiang, D.; Wei, Z.; Chen, J.; Jing, J. Fabrication of Superhydrophobic Nano-Aluminum Films on Stainless Steel Meshes by Electrophoretic Deposition for Oil-Water Separation. Appl. Surf. Sci. 2018, 427, 253–261. [Google Scholar] [CrossRef]
- Alam, M.S.; Rahman, M.M.; Sattar, M.A. Effects of Variable Suction and Thermophoresis on Steady MHD Combined Free-Forced Convective Heat and Mass Transfer Flow over a Semi-Infinite Permeable Inclined Plate in the Presence of Thermal Radiation. Int. J. Therm. Sci. 2008, 47, 758–765. [Google Scholar] [CrossRef]
- Rahman, M. Thermophoretic Deposition of Nanoparticles Due to a Permeable Rotating Disk: Effects of Partial Slip, Magnetic Field, Thermal Radiation, Thermal-Diffusion and Diffusion-Thermo. In Proceedings of the International Conference on Computational Fluid Dynamics ICCFD: 2013, Berlin, Germany, 22 May 2013; pp. 651–663. [Google Scholar]
- Punith Gowda, R.J.; Naveen Kumar, R.; Aldalbahi, A.; Issakhov, A.; Prasannakumara, B.C.; Rahimi-Gorji, M.; Rahaman, M. Thermophoretic Particle Deposition in Time-Dependent Flow of Hybrid Nanofluid over Rotating and Vertically Upward/Downward Moving Disk. Surf. Interfaces 2021, 22, 100864. [Google Scholar] [CrossRef]
- Bashir, M.N.; Rauf, A.; Shehzad, S.A.; Ali, M.; Mushtaq, T. Thermophoresis Phenomenon in Radiative Flow about Vertical Movement of a Rotating Disk in Porous Region. Adv. Mech. Eng. 2022, 14, 168781322211150. [Google Scholar] [CrossRef]
- Bozbağ, S.E.; Erkey, C. Supercritical Deposition: Current Status and Perspectives for the Preparation of Supported Metal Nanostructures. J. Supercrit. Fluids 2015, 96, 298–312. [Google Scholar] [CrossRef]
- Gorji, M.S.; Khairunisak, A.R.; Cheong, K.Y. Deposition of Gold Nanoparticles on Linker-Free Silicon Substrate by Spin-Coating. Adv. Mat. Res. 2014, 1024, 124–127. [Google Scholar] [CrossRef]
- Colson, P.; Cloots, R.; Henrist, C. Experimental Design Applied to Spin Coating of 2D Colloidal Crystal Masks: A Relevant Method? Langmuir 2011, 27, 12800–12806. [Google Scholar] [CrossRef]
- Weiss, R.A.; Zhai, X.; Dobrynin, A.V. Nanoparticle-Textured Surfaces from Spin Coating. Langmuir 2008, 24, 5218–5220. [Google Scholar] [CrossRef]
- Bräuer, B.; Zahn, D.R.T.; Rüffer, T.; Salvan, G. Deposition of Thin Films of a Transition Metal Complex by Spin Coating. Chem. Phys. Lett. 2006, 432, 226–229. [Google Scholar] [CrossRef]
- Sinturel, C.; Vayer, M.; Mahut, F.; Bonnier, F.; Chourpa, I.; Munnier, E. Influence of PLGA Nanoparticles on the Deposition of Model Water-Soluble Biocompatible Polymers by Dip Coating. Colloids Surfaces A Physicochem. Eng. Asp. 2021, 608, 125591. [Google Scholar] [CrossRef]
- Prevo, B.G.; Kuncicky, D.M.; Velev, O.D. Engineered Deposition of Coatings from Nano- and Micro-Particles: A Brief Review of Convective Assembly at High Volume Fraction. Colloids Surf. A Physicochem. Eng. Asp. 2007, 311, 2–10. [Google Scholar] [CrossRef]
- Chun, D.-M.; Kim, M.-H.; Lee, J.-C.; Ahn, S.-H. Nano Particle Deposition System (NPDS) for Ceramic and Metal Coating at Room Temperature and Low Vacuum Condition. In Proceedings of the 2008 International Conference on Smart Manufacturing Application, Goyangi, Republic of Korea, 9–11 April 2008; pp. 383–386. [Google Scholar]
- Shukla, V.; Elliott, G.S.; Kear, B.H. Nanopowder Deposition by Supersonic Rectangular Jet Impingement. J. Therm. Spray Technol. 2000, 9, 394–398. [Google Scholar] [CrossRef]
- Homemade, E.; Zigelman, A.; Abezgauz, L.; Manor, O. Signatures of van Der Waals and Electrostatic Forces in the Deposition of Nanoparticle Assemblies. J. Phys. Chem. Lett. 2018, 9, 5226–5232. [Google Scholar] [CrossRef] [PubMed]
- Rianasari, I.; de Jong, M.; Huskens, J.; van der Wiel, W. Covalent Coupling of Nanoparticles with Low-Density Functional Ligands to Surfaces via Click Chemistry. Int. J. Mol. Sci. 2013, 14, 3705–3717. [Google Scholar] [CrossRef] [PubMed]
- Petit, R.R.; Li, J.; Van de Voorde, B.; Van Vlierberghe, S.; Smet, P.F.; Detavernier, C. Atomic Layer Deposition on Polymer Thin Films: On the Role of Precursor Infiltration and Reactivity. ACS Appl. Mater. Interfaces 2021, 13, 46151–46163. [Google Scholar] [CrossRef]
- Qian, F.; Pascall, A.J.; Bora, M.; Han, T.Y.-J.; Guo, S.; Ly, S.S.; Worsley, M.A.; Kuntz, J.D.; Olson, T.Y. On-Demand and Location Selective Particle Assembly via Electrophoretic Deposition for Fabricating Structures with Particle-to-Particle Precision. Langmuir 2015, 31, 3563–3568. [Google Scholar] [CrossRef] [PubMed]
- Amrollahi, P.; Krasinski, J.S.; Vaidyanathan, R.; Tayebi, L.; Vashaee, D. Electrophoretic Deposition (EPD): Fundamentals and Applications from Nano- to Micro-Scale Structures. In Handbook of Nanoelectrochemistry; Springer International Publishing: Cham, Switzerland, 2015; pp. 1–27. [Google Scholar]
- Li, T.; Kumar, R.; Kar, A. Enhanced Heating by Microdroplet Lens in Nanoparticle Electrospray Laser Deposition. J. Laser Appl. 2021, 33, 012012. [Google Scholar] [CrossRef]
- Pereira, J.; Moita, A.; Moreira, A. The Pool-Boiling-Induced Deposition of Nanoparticles as the Transient Game Changer—A Review. Nanomaterials 2022, 12, 4270. [Google Scholar] [CrossRef]
- Kabir, E.; Kumar, V.; Kim, K.H.; Yip, A.C.K.; Sohn, J.R. Environmental Impacts of Nanomaterials. J. Environ. Manag. 2018, 225, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Varma, R.S. Greener Approach to Nanomaterials and Their Sustainable Applications. Curr. Opin. Chem. Eng. 2012, 1, 123–128. [Google Scholar] [CrossRef]
- Xu, X.; Lyu, Q.; Bader, J.; Accordino, M. Chapter 3: Green Nanomaterials Preparation: Sustainable Methods and Approaches. In Chemical and Materials Engineering; Royal Society of Chemistry: Cambridge, UK, 2015; pp. 34–63. [Google Scholar]
- Singh, S.B. Emerging Sustainable Nanomaterials and Their Applications in Catalysis and Corrosion Control. Curr. Nanosci. 2021, 17, 540–553. [Google Scholar] [CrossRef]
- Luque, R. Sustainable Nanomaterials: A Greener Future Avenue? J. Mater. Sci. Nanotechnol. 2013, 1, e106. [Google Scholar] [CrossRef]
- (PDF) Environmental Impact of Nanomaterials. Available online: https://www.researchgate.net/publication/262932053_Environmental_Impact_of_Nanomaterials (accessed on 26 March 2023).
- Sirohi, R.; Kumar, Y.; Madhavan, A.; Sagar, N.A.; Sindhu, R.; Bharatiraja, B.; Pandey, H.O.; Tarafdar, A. Engineered Nanomaterials for Water Desalination: Trends and Challenges. Environ. Technol. Innov. 2023, 30, 103108. [Google Scholar] [CrossRef]
- Gholipour, S.; Bahari, A.; Sohbatzadeh, F. Deposition of a Conductive Nanocomposite Layer on Cotton Fibers by Injecting Nanomaterial Colloid into an Atmospheric Pressure Plasma Jet. Mater. Today Commun. 2022, 32, 104114. [Google Scholar] [CrossRef]
- Verma, A.; Kumar, U.; Chaudhary, P.; Yadav, B.C. Investigation on Structural and Optical Properties of Porous SnO2 Nanomaterial Fabricated by Direct Liquid Injection Chemical Vapour Deposition Technique. Solid State Commun. 2022, 348–349, 114723. [Google Scholar] [CrossRef]
- Ahmad, R.; Wolfbeis, O.S.; Hahn, Y.B.; Alshareef, H.N.; Torsi, L.; Salama, K.N. Deposition of Nanomaterials: A Crucial Step in Biosensor Fabrication. Mater. Today Commun. 2018, 17, 289–321. [Google Scholar] [CrossRef]
- Jambhulkar, S.; Xu, W.; Ravichandran, D.; Prakash, J.; Mada Kannan, A.N.; Song, K. Scalable Alignment and Selective Deposition of Nanoparticles for Multifunctional Sensor Applications. Nano Lett. 2020, 20, 3199–3206. [Google Scholar] [CrossRef]
- Tonelli, D.; Scavetta, E.; Gualandi, I. Electrochemical Deposition of Nanomaterials for Electrochemical Sensing. Sensors 2019, 19, 1186. [Google Scholar] [CrossRef]
- Controlled, K.; Yu, C.-W.; Fu, H.-W.; Yang, S.-M.; Lin, Y.-S.; Lu, K.-C. Controlled Synthesis and Enhanced Gas Sensing Performance of Zinc-Doped Indium Oxide Nanowires. Nanomaterials 2023, 13, 1170. [Google Scholar] [CrossRef]
- Hussain, S.; Muangnapoh, T.; Traipattanakul, B.; Lekmuenwai, M. Anti-Icing Property of Superhydrophobic Nanostructured Brass via Deposition of Silica Nanoparticles and Nanolaser Treatment. Nanomaterials 2023, 13, 1139. [Google Scholar] [CrossRef]
- Liu, F.; Wang, X.; Wang, M.; Li, Y.; Jiang, Z.; Zhang, W.; Yang, H.; Wang, C.; Ho, S.-H. Facile Designing a Superhydrophobic Anti-Icing Surface Applied for Reliable Long-Term De-Icing. Chin. Chem. Lett. 2023, 34, 108353. [Google Scholar] [CrossRef]
- Schifano, E.; Cavoto, G.; Pandolfi, F.; Pettinari, G.; Apponi, A.; Ruocco, A.; Uccelletti, D.; Rago, I. Plasma-Etched Vertically Aligned CNTs with Enhanced Antibacterial Power. Nanomaterials 2023, 13, 1081. [Google Scholar] [CrossRef] [PubMed]
- Peruana, A.M.; Ciro, C.; Vargas, M.; Mendoza, J.G.; Vargas, C.M.; De María González Ponce, F. La Resistencia a Los Antibióticos: Un Problema Muy Serio. Acta Médica Peru. 2019, 36, 145–151. (In Spanish) [Google Scholar]
- Rosenblatt-Farrell, N. El Paisaje de La Resistencia a Los Antibióticos. Salud Publica Mex. 2009, 51, 435–442. (In Spanish) [Google Scholar] [CrossRef]
- Chitranshi, M.; Chen, D.R.; Kosel, P.; Cahay, M.; Schulz, M. Flexible and Lightweight Carbon Nanotube Composite Filter for Particulate Matter Air Filtration. Nanomaterials 2022, 12, 4094. [Google Scholar] [CrossRef] [PubMed]
- Bommakanti, V.; Banerjee, M.; Shah, D.; Manisha, K.; Sri, K.; Banerjee, S. An Overview of Synthesis, Characterization, Applications and Associated Adverse Effects of Bioactive Nanoparticles. Environ. Res. 2022, 214, 113919. [Google Scholar] [CrossRef]
- Jamkhande, P.G.; Ghule, N.W.; Bamer, A.H.; Kalaskar, M.G. Metal Nanoparticles Synthesis: An Overview on Methods of Preparation, Advantages and Disadvantages, and Applications. J. Drug Deliv. Sci. Technol. 2019, 53, 101174. [Google Scholar] [CrossRef]
- Park, Y.; Kang, H.; Jeong, W.; Son, H.; Ha, D.H. Electrophoretic Deposition of Aged and Charge Controlled Colloidal Copper Sulfide Nanoparticles. Nanomaterials 2021, 11, 133. [Google Scholar] [CrossRef]
- Hosseingholilou, S.; Dorranian, D.; Ghoranneviss, M. Characterization of Gold Nanoparticle Thin Film Prepared by Electrophoretic Deposition Method. Gold Bull. 2020, 53, 1–10. [Google Scholar] [CrossRef]
- Tang, J.; Ou, Q.; Zhou, H.; Qi, L.; Man, S. Seed-Mediated Electroless Deposition of Gold Nanoparticles for Highly Uniform and Efficient SERS Enhancement. Nanomaterials 2019, 9, 185. [Google Scholar] [CrossRef]
- Cao, K.; Zhu, Q.; Shan, B.; Chen, R. Controlled Synthesis of Pd/Pt Core Shell Nanoparticles Using Area-Selective Atomic Layer Deposition. Sci. Rep. 2015, 5, 8470. [Google Scholar] [CrossRef]
- Ghosh, S. Electroless Copper Deposition: A Critical Review. Thin Solid Film. 2019, 669, 641–658. [Google Scholar] [CrossRef]
Application | Technique | Nanomaterial | Matrix | Year | Reference |
---|---|---|---|---|---|
Effect on structural and optical properties (With increasing film thickness, the dielectric properties, absorption coefficient, and band gap energy have increased) | Vertical deposition angle and high vacuum using electron gun evaporation method | Tantalum oxidenanolayers | Glass substrate | 2021 | [25] |
Low-cost methodology | Spray deposition | Graphene nanoplatelets | Carbon fiber–reinforced polymer | 2020 | [26] |
Low-cost and easy way for the preparation of 1D ZnO nanostructures | Electrochemical deposition | ZnO nanorod arrays | ITO glass substrates | 2015 | [27] |
Antibacterial properties | Tollen’s reaction | Silver nanoparticles | Inorganic and organic substrate surfaces (Metallic, polymeric, ceramic) | 2004 | [28] |
Sensing and catalysis | Electroless deposition | Au nanoparticles | Different substrates | 2020 | [29] |
Modify physical properties | Physical vapor deposition | Titanium nanolayers | Glass substrates | 2013 | [36] |
Low cost to provide reliable bond strength | In situ deposition | Nano-Silica | Yttria–Tetragonal Zirconia Polycrystal (Y–TZP) | 2015 | [37] |
Application | Technique | Nanomaterial | Matrix | Year | Reference |
---|---|---|---|---|---|
Improve mechanical properties and mechanical erosion by gases and particulate erosion | Chemical vapor deposition | Hydrocarbon gases | Nanoporous structure (Polymer composite) | 2022 | [39] |
Enhance bond properties | Electrophoretic deposition | Nano-Silica | Carbon Fiber surfaces | 2020 | [40] |
Antimicrobial properties | In situ deposition | Nano-Cu2O | Electrospun chitosan nanofibrous | 2021 | [41] |
Photocatalytic activation properties | Sol–gel method | NiO nanoparticles | Cotton | 2021 | [42] |
Wound healing | Pulsed laser deposition | Ag NPs | Selenium/carbonated hydroxyapatite/e polycaprolactone nanofibrous | 2020 | [43] |
Rapid and cost-effective method for deposition | Microblast deposition technique | Nanostructured TiO2 | Polymer, conductive glass, and metallic substrate | 2013 | [44] |
Electrocatalytic activities and improve tolerance of CO | In situ electro-deposition | Pt micro–nano clusters | {[PMo12O40]3–/PAMAM} | 2012 | [45] |
Electrocatalyst | Electrochemical deposition | Au–Pt | PAP films | 2023 | [46] |
Application | Technique | Nanomaterial | Matrix | Year | Reference |
---|---|---|---|---|---|
Improve mechanical properties | Electrostatic layer-by-layer | Diamond Nanoparticles (SiO2, TiO2) | Si substrate | 2022 | [54] |
Improve optical and electrical properties | Plasma-Assisted Hot-Filament Evaporation | Silver nanoparticles | Indium Tin Oxide (Metallic) | 2020 | [55] |
Improve mechanical properties | Direct Laser Deposition | Nano-TiB whiskers | Ti–6Al–4 V | 2022 | [49] |
NR | Electrochemical deposition | Si nanospheres | Au and graphene Coated Cu | 2022 | [56] |
High reproducibility (Industrial applications) | Chemical vapor deposition | Carbon nano-onions | Fe/Fe3C | 2022 | [57] |
Biocompatibility | Atomic Layer deposition | Nano Sn–O2 | Titanium | 2022 | [53] |
Influence on microstructure (Decrease of SiCp size—The reaction between SiC and Aluminum matrix was more intense) | Laser metal deposition | Nano-SiCp | AlSi10Mg Alloy | 2022 | [58] |
Homogeneously equiaxed grains and no cracks compared | Direct laser deposition | TiAl (Metal matrix composite) | Ti—55Al—7.5 Nb/Ti—55 | 2022 | [59] |
Improve biological and physical characteristics | Electrophoretic deposition | Chitosan-reinforced Baghdadite ceramic nanoparticles | Stainless steel 316 L | 2022 | [60] |
Corrosion protection | Electrophoretic deposition | Polyaniline (PANI) Nanofibers | Copper | 2022 | [61] |
High active hydrogen evolution reaction | In situ deposition | Pt nanoparticles | Nano-pore stainless steel | 2021 | [62] |
Corrosion Protection | Electrochemical deposition under ultrasonic condition | CaP/SiO2 (Nanosized silica) | Titanium | 2021 | [63] |
Enhanced microhardness properties | Electroless deposition | SiC and Ni–P | Aluminum alloy lm25 | 2021 | [64] |
Electro-analytical application | Plasma-enhanced chemical vapor deposition | Large-area nanocrystalline graphite film (NCG) | SiO2 | 2019 | [34] |
Improve the microhardness, microstructure, and wear rate | Electroless deposition | SiC nanocoating | Aluminum alloy | 2021 | [65] |
Improve etching resistivity | Chemical vapor deposition (CVD) | Amorphous carbon films | Nanocrystalline graphite | 2021 | [66] |
Improve mechanical and corrosion properties | Machining process and heat treatment | Al2O3 Nanoparticles | Steel | 2018 | [67] |
Improve mechanical properties | Laser metal deposition | Cr nanoscale precipitates | Cu alloy | 2021 | [68] |
Improve mechanical properties and biocompatibility | Electrophoretic deposition | Nano HA–SiC | AISI 316l medical grade stainless | 2021 | [69] |
Hemocompatibility and MG–63 cell proliferation | Electrophoretic deposition | Bioactive glass (BG) and reduced graphene oxide (rGO)—bioglass nanohybrid (G–BG) | Anodized TiO2 nanotubes | 2020 | [70] |
Improve mechanical properties (Hardness) | Cold spray process | MgO Nanoparticle | Steel | 2018 | [71] |
Aerogel for high-performance asymmetrical supercapacitor | Electrophoretic deposition | Carbon nanorod/reduced graphene oxide | Nickel foam | 2020 | [72] |
New nanostructures with specifically a new property | RF sputtering using dynamic glancing angle deposition | Nanostructured CrN | Crystalline silicon | 2019 | [73] |
Efficient removal of organic pollutants | Atomic layer deposition | TiO2 nanocrystal | Activated carbon | 2021 | [74] |
Optoelectronic applications | Atomic layer deposition | ZnSe nanowires | Polycrystalline CdS | 2019 | [75] |
Improve corrosion resistance | electroplating | SnO2 nanoparticles | Zn composite | 2021 | [76] |
Suitable for nanodevice applications | Metalorganic chemical vapor deposition | GaN nanowires | Nano-patterned Si (111) | 2011 | [77] |
Improve mechanical properties (Hardness and Young’s modulus) | Chemical vapor deposition (CVD) | TiCN | Si substrate | 2020 | [78] |
Enhanced surface roughness for superhydrophobicity | Electrochemical deposition | Nano-hierarchical structure | Copper film | 2016 | [79] |
Polymer/inorganic hybrid solar cells | Pulsed laser deposition | ZnSe nanoneedles | Silicon substrates | 2013 | [80] |
Antioxidative properties and excellent thermal stability up to 500 °C in air | Electrophoretic deposition | Polyimide nanocoating | Carbon fibers | 2011 | [81] |
Semiconductors with unique properties | Atomic Layer Deposition | Tungsten oxide nanocrystals | Si substrates | 2017 | [82] |
Improve mechanical properties (Hardness and wear resistance) and the resistance to erosion—enhanced corrosion | Electrolytic deposition | Ni–Co–SiC nanocoating | Carbon Steel | 2011 | [83] |
Mechanism of self-organized formation or nano multilayer | Sputtering deposition | Nano-multilayer structure | Carbon-thin copper film | 2017 | [84] |
Less defect density | Pulsed laser deposition | Nano-zinc ferrite | Carbon Steel | 2016 | [85] |
Photoluminescence properties | Electroless deposition | Cu2O nanocrystallites | Silicon nanowire arrays | 2013 | [86] |
Emit into ultraviolet wavelengths and insert it into optoelectronic devices. | Chemical vapor deposition | Aluminum nitride nanodots | Si (111) | 2011 | [87] |
Aerospace application (The mechanical properties such as hardness and wear resistance are improved by heat treatment) | Electroless deposition | Nano Ni–B–Sn | 7075—T6 aluminum alloy | 2019 | [88] |
Biocompatibility for implants in biological materials | Electrochemical deposition and chemical treatment | Nano-hydroxyapatite | Carbon fibers | 2016 | [89] |
Improve corrosion resistance and surface topography | Electrostatic spray deposition | Nano-ceramic | Orthopedic Implant (Metallic) | 2015 | [90] |
Improve the corrosion resistance, pitting potential, and more compact material | Combined physical vapor deposition and electrochemical deposition | Nano-TiO2/FHA | Mg–Zn–Ce Alloy | 2014 | [91] |
An alternative method to place coating on steel | Active screen plasma nitriding | Nanosized titanium nitride | Steels | 2011 | [92] |
Oil–water separation with efficiency up to 95.8% ± 0.9% | Electrophoretic deposition | Nano-aluminum | Stainless steel | 2018 | [93] |
Technique | Driving Force | Reference |
---|---|---|
Deposition by electron gun evaporation | Electric Fields, Thermal Effects | [25,30] |
Physical Vapor Deposition (PVD) | Surface Interaction Forces, Thermal Effects | [31,32,33] |
Plasma-Enhanced Chemical Vapor Deposition (PECVD) | Chemical Affinity, Electric Fields | [34,35] |
Simultaneous and consecutive electrochemical deposition | Electrochemical Deposition, Kinetic Factors | [46] |
Electrophoretic Deposition | Electric Fields, Surface Interaction Forces | [40] |
Laser Metal Deposition | Thermal Effects, Kinetic Factors | [48] |
Electrochemical Deposition | Electrochemical Deposition, Kinetic Factors | [46] |
Atomic Layer Deposition (ALD) | Chemical Affinity, Electric Fields | [51,52,53] |
Thermophoretic deposition | Thermal Effects, Fluid Dynamics | [94,95,96,97] |
Supercritical deposition | Fluid Dynamics, Thermal Effects | [98] |
Spin Coating | Fluid Dynamics, Kinetic Factors | [99,100,101,102] |
Dip Coating | Fluid Dynamics, Kinetic Factors | [103,104,105,106] |
Technique | Precursor Purity | Nanomaterial | Year | Reference |
---|---|---|---|---|
Vertical Deposition | 99.90% | Tantalum oxide nanocoatings | 2021 | [25] |
Plasma-Enhanced Deposition | 99.90% | Silver nitride nanoparticles | 2004 | [28] |
Pulsed Laser Deposition | 99.90% | Silver nanoparticles | 2020 | [43] |
Physical Vapor Deposition | 98.00% | Titanium nanocoatings | 2013 | [36] |
Electrochemical Deposition | 99.99% | Gold nanoparticles | 2023 | [46] |
Electrophoretic Deposition | 99.00% | Copper nanoparticles | 2021 | [135] |
Electrophoretic Deposition | 99.00% | Gold nanocoatings | 2020 | [136] |
Electroless Deposition | 99.90% | Gold nanoparticles | 2019 | [137] |
Atomic Layer Deposition | 97.00% | Palladium nanocoatings | 2015 | [138] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Escorcia-Díaz, D.; García-Mora, S.; Rendón-Castrillón, L.; Ramírez-Carmona, M.; Ocampo-López, C. Advancements in Nanoparticle Deposition Techniques for Diverse Substrates: A Review. Nanomaterials 2023, 13, 2586. https://doi.org/10.3390/nano13182586
Escorcia-Díaz D, García-Mora S, Rendón-Castrillón L, Ramírez-Carmona M, Ocampo-López C. Advancements in Nanoparticle Deposition Techniques for Diverse Substrates: A Review. Nanomaterials. 2023; 13(18):2586. https://doi.org/10.3390/nano13182586
Chicago/Turabian StyleEscorcia-Díaz, Daniel, Sebastián García-Mora, Leidy Rendón-Castrillón, Margarita Ramírez-Carmona, and Carlos Ocampo-López. 2023. "Advancements in Nanoparticle Deposition Techniques for Diverse Substrates: A Review" Nanomaterials 13, no. 18: 2586. https://doi.org/10.3390/nano13182586
APA StyleEscorcia-Díaz, D., García-Mora, S., Rendón-Castrillón, L., Ramírez-Carmona, M., & Ocampo-López, C. (2023). Advancements in Nanoparticle Deposition Techniques for Diverse Substrates: A Review. Nanomaterials, 13(18), 2586. https://doi.org/10.3390/nano13182586