Escalating Catalytic Activity for Hydrogen Evolution Reaction on MoSe2@Graphene Functionalization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Regents and Materials
2.2. Preparation of MoSe2 and MoSe2-Graphene (MoSe2-Gr)
2.2.1. Preparation of Selenoacetamide
2.2.2. Synthesis of MoSe2 and MoSe2-Graphene (MoSe2-Gr)
2.3. Characterizations
Electrochemical Characterization and HER Activity Measurement
3. Results and Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Looney, B. Statistical Review of World Energy Globally Consistent Data on World Energy Markets and Authoritative Publications in the Field of Energy. BP Energy Outlook 2021, 70, 8–20. [Google Scholar]
- Brockway, P.E.; Owen, A.; Brand-Correa, L.I.; Hardt, L. Estimation of Global Final-Stage Energy-Return-on-Investment for Fossil Fuels with Comparison to Renewable Energy Sources. Nat. Energy 2019, 4, 612–621. [Google Scholar] [CrossRef] [Green Version]
- Shindell, D.; Smith, C.J. Climate and Air-Quality Benefits of a Realistic Phase-out of Fossil Fuels. Nature 2019, 573, 408–411. [Google Scholar] [CrossRef] [Green Version]
- Zaman, S.; Chen, S. A Perspective on Inaccurate Measurements in Oxygen Reduction and Carbon Di-oxide Reduction Reactions. J. Catal. 2023, 421, 221–227. [Google Scholar] [CrossRef]
- Körner, A.; Tam, C.; Bennett, S.; Gagné, J. Technology Roadmap-Hydrogen and Fuel Cells; International Energy Agency (IEA): Paris, France, 2015. [Google Scholar]
- Hosseini, S.E.; Wahid, M.A. Hydrogen Production from Renewable and Sustainable Energy Resources: Promising Green Energy Carrier for Clean Development. Renew. Sustain. Energy Rev. 2016, 57, 850–866. [Google Scholar] [CrossRef]
- Mazloomi, K.; Gomes, C. Hydrogen as an Energy Carrier: Prospects and Challenges. Renew. Sustain. Energy Rev. 2012, 16, 3024–3033. [Google Scholar] [CrossRef]
- Møller, K.T.; Jensen, T.R.; Akiba, E.; Li, H. wen Hydrogen—A Sustainable Energy Carrier. Prog. Nat. Sci. Mater. Int. 2017, 27, 34–40. [Google Scholar] [CrossRef]
- Sharma, S.; Agarwal, S.; Jain, A. Significance of Hydrogen as Economic and Environmentally Friendly Fuel. Energies 2021, 14, 7389. [Google Scholar] [CrossRef]
- Zaman, S.; Wang, M.; Liu, H.; Sun, F.; Yu, Y.; Shui, J.; Chen, M.; Wang, H. Carbon-Based Catalyst Supports for Oxygen Reduction in Proton-Exchange Membrane Fuel Cells. Trends Chem. 2022, 4, 886–906. [Google Scholar] [CrossRef]
- Zaman, S.; Su, Y.-Q.; Dong, C.-L.; Qi, R.; Huang, L.; Qin, Y.; Huang, Y.-C.; Li, F.-M.; You, B.; Guo, W.; et al. Scalable Molten Salt Synthesis of Platinum Alloys Planted in Metal–Nitrogen–Graphene for Efficient Oxygen Reduction. Angew. Chem. Int. Ed. 2022, 61, e202115835. [Google Scholar] [CrossRef]
- Holladay, J.D.; Hu, J.; King, D.L.; Wang, Y. An Overview of Hydrogen Production Technologies. Catal. Today 2009, 139, 244–260. [Google Scholar] [CrossRef]
- Hota, P.; Das, A.; Maiti, D.K. A Short Review on Generation of Green Fuel Hydrogen through Water Splitting. Int. J. Hydrog. Energy 2023, 48, 523–541. [Google Scholar] [CrossRef]
- Cheng, N.; Stambula, S.; Wang, D.; Banis, M.N.; Liu, J.; Riese, A.; Xiao, B.; Li, R.; Sham, T.-K.; Liu, L.-M.; et al. Platinum Single-Atom and Cluster Catalysis of the Hydrogen Evolution Reaction. Nat. Commun. 2016, 7, 13638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gasteiger, H.A.; Kocha, S.S.; Sompalli, B.; Wagner, F.T. Activity Benchmarks and Requirements for Pt, Pt-Alloy, and Non-Pt Oxygen Reduction Catalysts for PEMFCs. Appl. Catal. B Environ. 2005, 56, 9–35. [Google Scholar] [CrossRef]
- Roger, I.; Shipman, M.A.; Symes, M.D. Earth-Abundant Catalysts for Electrochemical and Photoelectrochemical Water Splitting. Nat. Rev. Chem. 2017, 1, 3. [Google Scholar] [CrossRef]
- Eftekhari, A. Electrocatalysts for Hydrogen Evolution Reaction. Int. J. Hydrog. Energy 2017, 42, 11053–11077. [Google Scholar] [CrossRef]
- Wei, J.; Zhou, M.; Long, A.; Xue, Y.; Liao, H.; Wei, C.; Xu, Z.J. Heterostructured Electrocatalysts for Hydrogen Evolution Reaction Under Alkaline Conditions. Nano-Micro Lett. 2018, 10, 75. [Google Scholar] [CrossRef] [Green Version]
- Mohammed-Ibrahim, J.; Xiaoming, S.; Sun, X. Recent Progress on Earth Abundant Electrocatalysts for Hydrogen Evolution Reaction (HER) in Alkaline Medium to Achieve Efficient Water Splitting—A Review. J. Energy Chem. 2019, 34, 111–160. [Google Scholar] [CrossRef]
- Abdelghafar, F.; Xu, X.; Jiang, S.P.; Shao, Z. Designing Single-Atom Catalysts toward Improved Alkaline Hydrogen Evolution Reaction. Mater. Rep. Energy 2022, 2, 100144. [Google Scholar] [CrossRef]
- Xu, X.; Shao, Z.; Jiang, S.P. High-Entropy Materials for Water Electrolysis. Energy Technol. 2022, 10, 2200573. [Google Scholar] [CrossRef]
- Huang, L.; Wei, M.; Zaman, S.; Ali, A.; Xia, B.Y. Well-Connection of Micro-Platinum and Cobalt Oxide Flower Array with Optimized Water Dissociation and Hydrogen Recombination for Efficient Overall Water Splitting. Chem. Eng. J. 2020, 398, 125669. [Google Scholar] [CrossRef]
- Choi, W.; Choudhary, N.; Han, G.H.; Park, J.; Akinwande, D.; Lee, Y.H. Recent Development of Two-Dimensional Transition Metal Dichalcogenides and Their Applications. Mater. Today 2017, 20, 116–130. [Google Scholar] [CrossRef]
- Shi, Y.; Li, H.; Li, L.-J. Recent Advances in Controlled Synthesis of Two-Dimensional Transition Metal Dichalcogenides via Vapour Deposition Techniques. Chem. Soc. Rev. 2015, 44, 2744–2756. [Google Scholar] [CrossRef]
- Ahmed, S.; Yi, J. Two-Dimensional Transition Metal Dichalcogenides and Their Charge Carrier Mobilities in Field-Effect Transistors. Nano-Micro Lett. 2017, 9, 50. [Google Scholar] [CrossRef] [PubMed]
- Eftekhari, A. Molybdenum Diselenide (MoSe2) for Energy Storage, Catalysis, and Optoelectronics. Appl. Mater. Today 2017, 8, 1–17. [Google Scholar] [CrossRef]
- Duan, X.; Wang, C.; Pan, A.; Yu, R.; Duan, X. Two-Dimensional Transition Metal Dichalcogenides as Atomically Thin Semiconductors: Opportunities and Challenges. Chem. Soc. Rev. 2015, 44, 8859–8876. [Google Scholar] [CrossRef]
- Han, J.; Jang, H.; Thi Bui, H.; Jahn, M.; Ahn, D.; Cho, K.; Jun, B.; Lee, S.U.; Sabine, S.; Stöger-Pollach, M.; et al. Stable Performance of Li-S Battery: Engineering of Li2S Smart Cathode by Reduction of Multilayer Graphene-Embedded 2D-MoS2. J. Alloys Compd. 2020, 862, 158031. [Google Scholar] [CrossRef]
- Bui, H.T.; Jang, H.; Ahn, D.; Han, J.; Sung, M.; Kutwade, V.; Patil, M.; Sharma, R.; Han, S.-H. High-Performance Li-Se Battery: Li2Se Cathode as Intercalation Product of Electrochemical in Situ Reduction of Multilayer Graphene-Embedded 2D-MoSe2. Electrochim. Acta 2021, 368, 137556. [Google Scholar] [CrossRef]
- Pak, S.; Lim, J.; Hong, J.; Cha, S. Enhanced Hydrogen Evolution Reaction in Surface Functionalized Mos2 Monolayers. Catalysts 2021, 11, 70. [Google Scholar] [CrossRef]
- Zhu, K.; Li, C.; Jing, Z.; Liu, X.; He, Y.; Lv, X.; Wang, Y.; Liu, K. Two-Dimensional Transition-Metal Dichalcogenides for Electrochemical Hydrogen Evolution Reaction. FlatChem 2019, 18, 100140. [Google Scholar] [CrossRef]
- Voiry, D.; Yang, J.; Chhowalla, M. Recent Strategies for Improving the Catalytic Activity of 2D TMD Nanosheets Toward the Hydrogen Evolution Reaction. Adv. Mater. 2016, 28, 6197–6206. [Google Scholar] [CrossRef]
- Xu, Y.; Ge, R.; Yang, J.; Li, J.; Li, S.; Li, Y.; Zhang, J.; Feng, J.; Liu, B.; Li, W. Molybdenum Disulfide (MoS2)-Based Electrocatalysts for Hydrogen Evolution Reaction: From Mechanism to Manipulation. J. Energy Chem. 2022, 74, 45–71. [Google Scholar] [CrossRef]
- Van Nguyen, T.; Tekalgne, M.; Nguyen, T.P.; Van Le, Q.; Ahn, S.H.; Kim, S.Y. Electrocatalysts Based on MoS2 and WS2 for Hydrogen Evolution Reaction: An Overview. Battery Energy 2023, 2, 20220057. [Google Scholar] [CrossRef]
- Liu, Z.; Li, N.; Zhao, H.; Du, Y. Colloidally Synthesized MoSe2/Graphene Hybrid Nanostructures as Efficient Electrocatalysts for Hydrogen Evolution. J. Mater. Chem. A 2015, 3, 19706–19710. [Google Scholar] [CrossRef]
- Mao, S.; Wen, Z.; Ci, S.; Guo, X.; Ostrikov, K.; Chen, J. Perpendicularly Oriented MoSe2/Graphene Nanosheets as Advanced Electrocatalysts for Hydrogen Evolution. Small 2015, 11, 414–419. [Google Scholar] [CrossRef]
- Zhang, L.; Lei, Y.; Zhou, D.; Xiong, C.; Jiang, Z.; Li, X.; Shang, H.; Zhao, Y.; Chen, W.; Zhang, B. Interfacial Engineering of 3D Hollow CoSe2@ultrathin MoSe2 Core@shell Heterostructure for Efficient PH-Universal Hydrogen Evolution Reaction. Nano Res. 2022, 15, 2895–2904. [Google Scholar] [CrossRef]
- Tang, H.; Dou, K.; Kaun, C.-C.; Kuang, Q.; Yang, S. MoSe2 Nanosheets and Their Graphene Hybrids: Synthesis, Characterization and Hydrogen Evolution Reaction Studies. J. Mater. Chem. A 2014, 2, 360–364. [Google Scholar] [CrossRef]
- Bui, H.T.; Linh, D.C.; Nguyen, L.D.; Chang, H.; Patil, S.A.; Shrestha, N.K.; Bui, K.X.; Bui, T.S.; Nguyen, T.N.A.; Tung, N.T.; et al. In-Situ Formation and Integration of Graphene into MoS2 Interlayer Spacing: Expansion of Interlayer Spacing for Superior Hydrogen Evolution Reaction in Acidic and Alkaline Electrolyte. J. Mater. Sci. 2022, 57, 18993–19005. [Google Scholar] [CrossRef]
- Huang, S.-Y.; Le, P.-A.; Nguyen, V.-T.; Lu, Y.-C.; Sung, C.-W.; Cheng, H.-W.; Hsiao, C.-Y.; Dang, V.D.; Chiu, P.-W.; Wei, K.-H. Surface Plasma–Induced Tunable Nitrogen Doping through Precursors Provides 1T-2H MoSe2/Graphene Sheet Composites as Electrocatalysts for the Hydrogen Evolution Reaction. Electrochim. Acta 2022, 426, 140767. [Google Scholar] [CrossRef]
- Ren, X.; Yao, Y.; Ren, P.; Wang, Y.; Peng, Y. Facile Sol-Gel Synthesis of C@MoSe2 Core-Shell Composites as Advanced Hydrogen Evolution Reaction Catalyst. Mater. Lett. 2019, 238, 286–289. [Google Scholar] [CrossRef]
- Chen, W.; Qiao, R.; Song, C.; Zhao, L.; Jiang, Z.-J.; Maiyalagan, T.; Jiang, Z. Tailoring the Thickness of MoSe2 Layer of the Hierarchical Double-Shelled N-Doped Carbon@MoSe2 Hollow Nanoboxes for Efficient and Stable Hydrogen Evolution Reaction. J. Catal. 2020, 381, 363–373. [Google Scholar] [CrossRef]
- Zheng, D.; Cheng, P.; Yao, Q.; Fang, Y.; Yang, M.; Zhu, L.; Zhang, L. Excess Se-Doped MoSe2 and Nitrogen-Doped Reduced Graphene Oxide Composite as Electrocatalyst for Hydrogen Evolution and Oxygen Reduction Reaction. J. Alloys Compd. 2020, 848, 156588. [Google Scholar] [CrossRef]
- Bui, H.T.; Shrestha, N.K.; Khadtare, S.; Bathula, C.D.; Giebeler, L.; Noh, Y.-Y.Y.; Han, S.H. Anodically Grown Binder-Free Nickel Hexacyanoferrate Film: Toward Efficient Water Reduction and Hexacyanoferrate Film Based Full Device for Overall Water Splitting. ACS Appl. Mater. Interfaces 2017, 9, 18015–18021. [Google Scholar] [CrossRef] [PubMed]
- Bui, H.T.; Ahn, D.Y.; Shrestha, N.K.; Sung, M.M.; Lee, J.K.; Han, S.H. Self-Assembly of Cobalt Hexacyanoferrate Crystals in 1-D Array Using Ion Exchange Transformation Route for Enhanced Electrocatalytic Oxidation of Alkaline and Neutral Water. J. Mater. Chem. A 2016, 4, 9781–9788. [Google Scholar] [CrossRef]
- Silva, M.M.S.; Raimundo, R.A.; Silva, T.R.; Araújo, A.J.M.; Macedo, D.A.; Morales, M.A.; Souza, C.P.; Santos, A.G.; Lopes-Moriyama, A.L. Morphology-Controlled NiFe2O4 Nanostructures: Influence of Calcination Temperature on Structural, Magnetic and Catalytic Properties towards OER. J. Electroanal. Chem. 2023, 933, 117277. [Google Scholar] [CrossRef]
- Feng, J.; Sun, X.; Wu, C.; Peng, L.; Lin, C.; Hu, S.; Yang, J.; Xie, Y. Metallic Few-Layered VS2 Ultrathin Nanosheets: High Two-Dimensional Conductivity for In-Plane Supercapacitors. J. Am. Chem. Soc. 2011, 133, 17832–17838. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Dong, X.; Wang, Y.; Zheng, N.; Zhao, Y.; Xu, W.; Ding, T. Molybdenum Disulfide with Enlarged Interlayer Spacing Decorated on Reduced Graphene Oxide for Efficient Electrocatalytic Hydrogen Evolution. J. Mater. Sci. 2020, 55, 6637–6647. [Google Scholar] [CrossRef]
- Wu, J.; Liu, Y.; Yao, Y.; Shao, Y.; Wu, X. Graphene-like 2H/1T-MoSe2 with Superior Full Spectrum Absorption: Morphology and Phase Engineering. J. Alloys Compd. 2021, 877, 160317. [Google Scholar] [CrossRef]
- Zhou, L.; Wu, R.; Jiang, Y.; Li, Z.; Wei, S. Construction of Heterogeneous 1T/2H MoSe2 Homojunction Nanosheets with Excellent Broad-Spectrum Photocatalytic Activity. J. Mater. Sci. 2022, 57, 14386–14397. [Google Scholar] [CrossRef]
- Jiang, Z.; Wang, Y.; Yuan, S.; Shi, L.; Wang, N.; Xiong, J.; Lai, W.; Wang, X.; Kang, F.; Lin, W.; et al. Ultrahigh-Working-Frequency Embedded Supercapacitors with 1T Phase MoSe2 Nanosheets for System-in-Package Application. Adv. Funct. Mater. 2019, 29, 1807116. [Google Scholar] [CrossRef]
- Sekine, T.; Izumi, M.; Nakashizu, T.; Uchinokura, K.; Matsuura, E. Raman Scattering and Infrared Reflectance in 2H-MoSe2. J. Phys. Soc. Jpn. 1980, 49, 1069–1077. [Google Scholar] [CrossRef]
Sample Name | Nitrogen | Carbon | Hydrogen |
---|---|---|---|
MoSe2 | 1.635 | 11.632 | 0.228 |
MoSe2-Gr | 1.700 | 7.210 | 0.995 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bui, H.T.; Lam, N.D.; Linh, D.C.; Mai, N.T.; Chang, H.; Han, S.-H.; Oanh, V.T.K.; Pham, A.T.; Patil, S.A.; Tung, N.T.; et al. Escalating Catalytic Activity for Hydrogen Evolution Reaction on MoSe2@Graphene Functionalization. Nanomaterials 2023, 13, 2139. https://doi.org/10.3390/nano13142139
Bui HT, Lam ND, Linh DC, Mai NT, Chang H, Han S-H, Oanh VTK, Pham AT, Patil SA, Tung NT, et al. Escalating Catalytic Activity for Hydrogen Evolution Reaction on MoSe2@Graphene Functionalization. Nanomaterials. 2023; 13(14):2139. https://doi.org/10.3390/nano13142139
Chicago/Turabian StyleBui, Hoa Thi, Nguyen Duc Lam, Do Chi Linh, Nguyen Thi Mai, HyungIl Chang, Sung-Hwan Han, Vu Thi Kim Oanh, Anh Tuan Pham, Supriya A. Patil, Nguyen Thanh Tung, and et al. 2023. "Escalating Catalytic Activity for Hydrogen Evolution Reaction on MoSe2@Graphene Functionalization" Nanomaterials 13, no. 14: 2139. https://doi.org/10.3390/nano13142139
APA StyleBui, H. T., Lam, N. D., Linh, D. C., Mai, N. T., Chang, H., Han, S.-H., Oanh, V. T. K., Pham, A. T., Patil, S. A., Tung, N. T., & Shrestha, N. K. (2023). Escalating Catalytic Activity for Hydrogen Evolution Reaction on MoSe2@Graphene Functionalization. Nanomaterials, 13(14), 2139. https://doi.org/10.3390/nano13142139