Low-Vacuum Catalyst-Free Physical Vapor Deposition and Magnetotransport Properties of Ultrathin Bi2Se3 Nanoribbons
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Bi2Se3 Nanoribbons
2.2. Characterization of Morphology of Bi2Se3 Nanoribbons
2.3. Magnetotransport Measurements
3. Results and Discussion
3.1. Optimization of Synthesis Parameters for Obtaining Ultrathin Bi2Se3 Nanoribbons
3.2. Magnetotransport Properties of Ultrathin Bi2Se3 Nanoribbons
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mazumder, K.; Shirage, P.M. A brief review of Bi2Se3 based topological insulator: From fundamentals to applications. J. Alloys Compd. 2021, 888, 161492. [Google Scholar] [CrossRef]
- Cao, H.; Xu, S.; Miotkowski, I.; Tian, J.; Pandey, D.; Hasan, M.Z.; Chen, Y.P. Structural and electronic properties of highly doped topological insulator Bi2Se3 crystals. Phys. Status Solidi—Rapid Res. Lett. 2013, 7, 133–135. [Google Scholar] [CrossRef]
- Cui, Y.; Kong, D.S.; Randel, J.C.; Peng, H.L.; Cha, J.J.; Meister, S.; Lai, K.J.; Chen, Y.L.; Shen, Z.X.; Manoharan, H.C. Topological Insulator Nanowires and Nanoribbons. Nano Lett. 2010, 10, 329–333. [Google Scholar]
- Park, H.; Jeong, K.; Maeng, I.H.; Sim, K.I.; Pathak, S.; Kim, J.; Hong, S.B.; Jung, T.S.; Kang, C.; Kim, J.H.; et al. Enhanced Spin-to-Charge Conversion Efficiency in Ultrathin Bi2Se3Observed by Spintronic Terahertz Spectroscopy. ACS Appl. Mater. Interfaces 2021, 13, 23153–23160. [Google Scholar] [CrossRef]
- Yan, Y.; Wang, L.X.; Ke, X.; Van Tendeloo, G.; Wu, X.S.; Yu, D.P.; Liao, Z.M. High-Mobility Bi2Se3 nanoplates manifesting quantum oscillations of surface states in the sidewalls. Sci. Rep. 2014, 4, 3817. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Zhang, S.; Ju, P.; Su, H.; Ai, S. Flower-like Bi2Se3 nanostructures: Synthesis and their application for the direct electrochemistry of hemoglobin and H2O2 detection. Electrochim. Acta 2012, 64, 171–176. [Google Scholar] [CrossRef]
- Du, B.; Kang, W.; He, Y.; Wang, Y.; Yang, X.; Meng, G.; Zhu, Z.; Lin, X.; Tan, Y.; Liang, C.; et al. Topological insulator Bi2Se3 for highly sensitive, selective and anti-humidity gas sensors. iScience 2023, 26, 106387. [Google Scholar] [CrossRef] [PubMed]
- Du, F.; Zheng, K.; Zeng, S.; Yuan, Y. Sensitivity Enhanced Plasmonic Biosensor Using Bi2Se3-Graphene Heterostructures: A Theoretical Analysis. Nanomaterials 2022, 12, 4078. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Zhou, H.; Wang, J. Topological insulators photodetectors: Preparation, advances and application challenges. Mater. Today Commun. 2022, 33, 104190. [Google Scholar] [CrossRef]
- Kim, J.; Park, S.; Jang, H.; Koirala, N.; Lee, J.B.; Kim, U.J.; Lee, H.S.; Roh, Y.G.; Lee, H.; Sim, S.; et al. Highly Sensitive, Gate-Tunable, Room-Temperature Mid-Infrared Photodetection Based on Graphene-Bi2Se3 Heterostructure. ACS Photonics 2017, 4, 482–488. [Google Scholar] [CrossRef]
- Sharma, A.; Bhattacharyya, B.; Srivastava, A.K.; Senguttuvan, T.D.; Husale, S. High performance broadband photodetector using fabricated nanowires of bismuth selenide. Sci. Rep. 2016, 6, 19138. [Google Scholar] [CrossRef] [PubMed]
- Zhi, J.; Zehtab Yazdi, A.; Valappil, G.; Haime, J.; Chen, P. Artificial solid electrolyte interphase for aqueous lithium energy storage systems. Sci. Adv. 2017, 3, e1701010. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Yang, Z.; Sun, J.; Zhou, H.; Chi, X.; Chen, H.; Li, A.X.; Yao, Y.; Chen, S. Bi2Se3/C Nanocomposite as a New Sodium-Ion Battery Anode Material. Nano-Micro Lett. 2018, 10, 50. [Google Scholar] [CrossRef] [PubMed]
- Ud Din, M.A.; Irfan, S.; Jamil, S.; Dar, S.U.; Khan, Q.U.; Saleem, M.S.; Cheng, N. Graphene-like ultrathin bismuth selenide nanosheets as highly stable anode material for sodium-ion battery. J. Alloys Compd. 2022, 901, 163572. [Google Scholar] [CrossRef]
- Andzane, J.; Felsharuk, A.; Buks, K.; Sarakovskis, A.; Niherysh, K.; Gabrusenoks, J.; Erts, D. Synthesis and Properties of Bismuth Selenide Based Nanolaminates for Application in Thermoelectrics. Adv. Mater. Interfaces 2022, 9, 2200385. [Google Scholar] [CrossRef]
- Jasulaneca, L.; Meija, R.; Kauranens, E.; Sondors, R.; Andzane, J.; Rimsa, R.; Mozolevskis, G.; Erts, D. Cryogenic nanoelectromechanical switch enabled by Bi2Se3 nanoribbons. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2022, 275, 115510. [Google Scholar] [CrossRef]
- Ali, Z.; Butt, S.; Cao, C.; Butt, F.K.; Tahir, M.; Tanveer, M.; Aslam, I.; Rizwan, M.; Idrees, F.; Khalid, S. Thermochemically evolved nanoplatelets of bismuth selenide with enhanced thermoelectric figure of merit. AIP Adv. 2014, 4, 117129. [Google Scholar] [CrossRef]
- Hong, M.; Chen, Z.G.; Yang, L.; Han, G.; Zou, J. Enhanced Thermoelectric Performance of Ultrathin Bi2Se3 Nanosheets through Thickness Control. Adv. Electron. Mater. 2015, 1, 1500025. [Google Scholar] [CrossRef]
- Osterhage, H.; Gooth, J.; Hamdou, B.; Gwozdz, P.; Zierold, R.; Nielsch, K. Thermoelectric properties of topological insulator Bi2Te3, Sb2Te3, and Bi2Se3 thin film quantum wells. Appl. Phys. Lett. 2014, 105, 123117. [Google Scholar] [CrossRef]
- Stephen, G.M.; Naumov, I.; Tyagi, S.; Vail, O.A.; Demell, J.E.; Dreyer, M.; Butera, R.E.; Hanbicki, A.T.; Taylor, P.J.; Mayergoyz, I.; et al. Effect of Sn Doping on Surface States of Bi2Se3Thin Films. J. Phys. Chem. C 2020, 124, 27082–27088. [Google Scholar] [CrossRef]
- Ju, Z.; Hou, Y.; Bernard, A.; Taufour, V.; Yu, D.; Kauzlarich, S.M. Ambipolar Topological Insulator and High Carrier Mobility in Solution Grown Ultrathin Nanoplates of Sb-Doped Bi2Se3. ACS Appl. Electron. Mater. 2019, 1, 1917–1923. [Google Scholar] [CrossRef]
- Kong, D.; Chen, Y.; Cha, J.J.; Zhang, Q.; Analytis, J.G.; Lai, K.; Liu, Z.; Hong, S.S.; Koski, K.J.; Mo, S.-K. Ambipolar field effect in the ternary topological insulator (BixSb1−x)2Te3 by composition tuning. Nat. Nanotechnol. 2011, 6, 705–709. [Google Scholar] [CrossRef]
- Lee, J.; Park, J.; Lee, J.-H.; Kim, J.S.; Lee, H.-J. Gate-tuned differentiation of surface-conducting states in Bi1.5Sb0.5Te1.7Se1.3 topological-insulator thin crystals. Phys. Rev. B 2012, 86, 245321. [Google Scholar] [CrossRef]
- Hong, S.S.; Cha, J.J.; Kong, D.; Cui, Y. Ultra-low carrier concentration and surface-dominant transport in antimony-doped Bi2Se3 topological insulator nanoribbons. Nat. Commun. 2012, 3, 757. [Google Scholar] [CrossRef]
- Pan, Z.W.; Dai, Z.R.; Wang, Z.L. Nanobelts of semiconducting oxides. Science 2001, 291, 1947–1949. [Google Scholar] [CrossRef]
- Kunakova, G.; Galletti, L.; Charpentier, S.; Andzane, J.; Erts, D.; Léonard, F.; Spataru, C.D.; Bauch, T.; Lombardi, F. Bulk-free topological insulator Bi2Se3 nanoribbons with magnetotransport signatures of Dirac surface states. Nanoscale 2018, 10, 19595–19602. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liu, C.X.; Qi, X.L.; Dai, X.; Fang, Z.; Zhang, S.C. Topological insulators in Bi2Se3, Bi2Te3 and Se2Te3 with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 438–442. [Google Scholar] [CrossRef]
- Wang, Y.; Xiu, F.; Cheng, L.; He, L.; Lang, M.; Tang, J.; Kou, X.; Yu, X.; Jiang, X.; Chen, Z. Gate-controlled surface conduction in Na-doped Bi2Te3 topological insulator nanoplates. Nano Lett. 2012, 12, 1170–1175. [Google Scholar] [CrossRef]
- Xiu, F.; He, L.; Wang, Y.; Cheng, L.; Chang, L.T.; Lang, M.; Huang, G.; Kou, X.; Zhou, Y.; Jiang, X.; et al. Manipulating surface states in topological insulator nanoribbons. Nat. Nanotechnol. 2011, 6, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, M.; Guan, D.; Bao, S.; Mi, J.; Iversen, B.B.; King, P.D.C.; Hofmann, P. Coexistence of the topological state and a two-dimensional electron gas on the surface of Bi2Se3. Nat. Commun. 2010, 1, 128. [Google Scholar] [CrossRef] [PubMed]
- King, P.D.C.; Hatch, R.C.; Bianchi, M.; Ovsyannikov, R.; Lupulescu, C.; Landolt, G.; Slomski, B.; Dil, J.H.; Guan, D.; Mi, J.L. Large tunable Rashba spin splitting of a two-dimensional electron gas in Bi2Se3. Phys. Rev. Lett. 2011, 107, 96802. [Google Scholar] [CrossRef]
- Benia, H.M.; Lin, C.; Kern, K.; Ast, C.R. Reactive chemical doping of the Bi2Se3 topological insulator. Phys. Rev. Lett. 2011, 107, 177602. [Google Scholar] [CrossRef]
- Ghaemi, P.; Mong, R.S.K.; Moore, J.E. In-plane transport and enhanced thermoelectric performance in thin films of the topological insulators Bi2Te3 and Bi2Se3. Phys. Rev. Lett. 2010, 105, 166603. [Google Scholar] [CrossRef]
- Andzane, J.; Kunakova, G.; Charpentier, S.; Hrkac, V.; Kienle, L.; Baitimirova, M.; Bauch, T.; Lombardi, F.; Erts, D. Catalyst-free vapour–solid technique for deposition of Bi2Te3 and Bi2Se3 nanowires/nanobelts with topological insulator properties. Nanoscale 2015, 7, 15935–15944. [Google Scholar] [CrossRef]
- Fang, L.; Jia, Y.; Miller, D.J.; Latimer, M.L.; Xiao, Z.L.; Welp, U.; Crabtree, G.W.; Kwok, W.K. Catalyst-free growth of millimeter-long topological insulator Bi2Se3 nanoribbons and the observation of the π-berry phase. Nano Lett. 2012, 12, 6164–6169. [Google Scholar] [CrossRef]
- Sondors, R.; Kunakova, G.; Jasulaneca, L.; Andzane, J.; Kauranens, E.; Bechelany, M.; Erts, D. High-yield growth and tunable morphology of Bi2Se3 nanoribbons synthesized on thermally dewetted au. Nanomaterials 2021, 11, 2020. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Pan, H.; Wei, Z.; Zhang, M.; Song, F.; Wang, X.; Zhang, R. Synthesis and magnetotransport properties of Bi2Se3 nanowires. Chin. Phys. B 2017, 26, 96101. [Google Scholar] [CrossRef]
- Gao, L.; Li, H.; Ren, W.; Wang, G.; Li, H.; Ashalley, E.; Zhong, Z.; Ji, H.; Zhou, Z.; Wu, J.; et al. The high-yield growth of Bi2Se3 nanostructures via facile physical vapor deposition. Vacuum 2017, 140, 58–62. [Google Scholar] [CrossRef]
- Kunakova, G.; Bauch, T.; Palermo, X.; Salvato, M.; Andzane, J.; Erts, D.; Lombardi, F. High-Mobility Ambipolar Magnetotransport in Topological Insulator Bi2Se3 Nanoribbons. Phys. Rev. Appl. 2021, 16, 024038. [Google Scholar] [CrossRef]
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Kunakova, G.; Meija, R.; Andzane, J.; Malinovskis, U.; Petersons, G.; Baitimirova, M.; Bechelany, M.; Bauch, T.; Lombardi, F.; Erts, D. Surface structure promoted high-yield growth and magnetotransport properties of Bi2Se3 nanoribbons. Sci. Rep. 2019, 9, 11328. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.; Dang, W.; Cha, J.J.; Li, H.; Meister, S.; Peng, H.; Liu, Z.; Cui, Y. Few-layer nanoplates of Bi2Se3 and Bi2Te3 with highly tunable chemical potential. Nano Lett. 2010, 10, 2245–2250. [Google Scholar] [CrossRef]
- Mattox, D.M. Handbook of Physical Vapor Deposition (PVD) Processing; William Andrew: Amsterdam, The Netherlands, 2010; ISBN 0815520387. [Google Scholar]
- Tereshchenko, O.E.; Kokh, K.A.; Atuchin, V.V.; Romanyuk, K.N.; Makarenko, S.V.; Golyashov, V.A.; Kozhukhov, A.S.; Prosvirin, I.P.; Shklyaev, A.A. Stability of the (0001) surface of the Bi2Se3 topological insulator. JETP Lett. 2011, 94, 465–468. [Google Scholar] [CrossRef]
- Erts, D.; Katkevics, J.; Sjomkane, M.; Andzane, J.; Sarakovskis, A.; Smits, K.; Viksna, A.; Rublova, Y.; Meija, R. EIS characterization of aging and humidity-related behavior of Bi2Se3 films of different morphologies. Nano-Struct. Nano-Objects 2022, 30, 100847. [Google Scholar] [CrossRef]
- Kong, D.; Cha, J.J.; Lai, K.; Peng, H.; Analytis, J.G.; Meister, S.; Chen, Y.; Zhang, H.J.; Fisher, I.R.; Shen, Z.X.; et al. Rapid surface oxidation as a source of surface degradation factor for Bi2Se3. ACS Nano 2011, 5, 4698–4703. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, H.; Gardner, D.R.; Lee, Y.S.; Jarillo-Herrero, P. Surface state transport and ambipolar electric field effect in Bi2Se3 nanodevices. Nano Lett. 2010, 10, 5032–5036. [Google Scholar] [CrossRef]
No. | Synthesis Parameters: | Results: | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Temperature [°C] | Time [min] | Pressure [Torr] | Nanoribbon Thickness, nm/% | Mean Thickness [nm] | |||||||
Tm | t2 | p1 | p2 | p3 | <10 | 10–15 | 15–20 | 20–25 | >25 | ||
1. | 575 | 15 | 5.00 | 11 | 0% | 0% | 0% | 0% | 100% | 52 | |
2. | 590 | 15 | 5.00 | 14 | Poor quality of nanoribbons: defects in crystal structure | ||||||
3 | 585 | 30 | 5.00 | 12.8 | 16.2 | 0% | 0% | 2.8% | 8.5% | 88.7% | 51 |
4 | 585 | 25 | 5.00 | 13.2 | 17 | 0% | 0% | 7.8% | 7.7% | 84.5% | 53 |
5 | 585 | 20 | 5.00 | 12.4 | 15.2 | 0% | 0% | 20% | 20% | 60% | 50 |
6 | 585 | 15 | 5.00 | 12.4 | 14.7 | 0% | 2.7% | 8% | 16% | 73.3% | 36 |
7 | 585 | 10 | 5.00 | 13 | 14.8 | 0% | 6.3% | 18.8% | 43.8% | 31.1% | 38 |
8 | 585 | 5 | 5.00 | 12.3 | 13.1 | 0% | 18.2% | 27.3% | 45.5% | 9% | 27 |
9 | 585 | 0 | 5.00 | 12.9 | — | 1.7% | 13.6% | 28.8% | 42.4% | 13.5% | 24 |
10 | 585 | 0 | 0.10 | 2.3 | — | 0% | 2.7% | 9.5% | 27% | 60.8% | 53 |
11 | 585 | 0 | 1.00 | 4.13 | — | 0% | 0% | 10% | 20% | 70% | 49 |
12 | 585 | 0 | 3.00 | 7.85 | — | 0% | 0% | 20% | 20% | 60% | 35 |
13 | 585 | 0 | 9.00 | 17.9 | — | 0% | 11.1% | 11.1% | 22.2% | 55.6% | 33 |
14 | 585 | 0 | 13.0 | 31.2 | — | 0% | 0% | 0% | 12.5% | 87.5% | 30 |
15 | 585 | 0 | 18.0 | 40.5 | — | No nanoribbons observed |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sondors, R.; Niherysh, K.; Andzane, J.; Palermo, X.; Bauch, T.; Lombardi, F.; Erts, D. Low-Vacuum Catalyst-Free Physical Vapor Deposition and Magnetotransport Properties of Ultrathin Bi2Se3 Nanoribbons. Nanomaterials 2023, 13, 2484. https://doi.org/10.3390/nano13172484
Sondors R, Niherysh K, Andzane J, Palermo X, Bauch T, Lombardi F, Erts D. Low-Vacuum Catalyst-Free Physical Vapor Deposition and Magnetotransport Properties of Ultrathin Bi2Se3 Nanoribbons. Nanomaterials. 2023; 13(17):2484. https://doi.org/10.3390/nano13172484
Chicago/Turabian StyleSondors, Raitis, Kiryl Niherysh, Jana Andzane, Xavier Palermo, Thilo Bauch, Floriana Lombardi, and Donats Erts. 2023. "Low-Vacuum Catalyst-Free Physical Vapor Deposition and Magnetotransport Properties of Ultrathin Bi2Se3 Nanoribbons" Nanomaterials 13, no. 17: 2484. https://doi.org/10.3390/nano13172484
APA StyleSondors, R., Niherysh, K., Andzane, J., Palermo, X., Bauch, T., Lombardi, F., & Erts, D. (2023). Low-Vacuum Catalyst-Free Physical Vapor Deposition and Magnetotransport Properties of Ultrathin Bi2Se3 Nanoribbons. Nanomaterials, 13(17), 2484. https://doi.org/10.3390/nano13172484