Strain-Induced Structural Phase Transitions in Epitaxial (001) BiCoO3 Films: A First-Principles Study
Abstract
1. Introduction
2. Computational Methods
3. Results and Discussion
3.1. Structures
3.2. Polarization and Antiferrodistortive Vetors
3.3. Nel Temperature
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fiebig, M.; Lottermoser, T.; Meier, D.; Trassin, M. The evolution of multiferroics. Nat. Rev. Mater. 2016, 1, 16046. [Google Scholar] [CrossRef]
- Liu, H.; Yang, X. A brief review on perovskite multiferroics. Ferroelectrics 2017, 507, 69–85. [Google Scholar] [CrossRef]
- Spaldin, N.A.; Ramesh, R. Advances in magnetoelectric multiferroics. Nat. Mater. 2019, 18, 203–212. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhao, S.; Zhou, Z.; Liu, M. Recent development of E-field control of interfacial magnetism in multiferroic heterostructures. Nano Res. 2023, 16, 5983–6000. [Google Scholar] [CrossRef]
- Shevlin, S. Multiferroics and the path to the market. Nat. Mater. 2019, 18, 191–192. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Menzel, S.; Polian, I.; Schmidt, H.; Du, N. Review on resistive switching devices based on multiferroic BiFeO3. Nanomaterials 2023, 13, 1325. [Google Scholar] [CrossRef]
- Oka, K.; Azuma, M.; Chen, W.T.; Yusa, H.; Belik, A.A.; Takayama-Muromachi, E.; Mizumaki, M.; Ishimatsu, N.; Hiraoka, N.; Tsujimoto, M.; et al. Pressure-induced spin-state transition in BiCoO3. J. Am. Chem. Soc. 2010, 132, 9438–9443. [Google Scholar] [CrossRef]
- Ming, X.; Meng, X.; Hu, F.; Wang, C.Z.; Huang, Z.F.; Fan, H.G.; Chen, G. Pressure-induced magnetic moment collapse and insulator-to-semimetal transition in BiCoO3. J. Phys. Condens. Matter 2009, 21, 295902. [Google Scholar] [CrossRef]
- Zhao, J.; Haw, S.C.; Wang, X.; Hu, Z.; Kuo, C.Y.; Chen, S.A.; Ishii, H.; Hiraoka, N.; Lin, H.J.; Chen, C.T.; et al. Spin State and Spin-State Transition of Co3+ Ion in BiCoO3. Phys. Status Solidi B 2021, 258, 2100117. [Google Scholar] [CrossRef]
- Pan, Z.; Jiang, X.; Nishikubo, T.; Sakai, Y.; Ishizaki, H.; Oka, K.; Lin, Z.; Azuma, M. Pronounced negative thermal expansion in lead-free BiCoO3-based ferroelectrics triggered by the stabilized perovskite structure. Chem. Mater. 2019, 31, 6187–6192. [Google Scholar] [CrossRef]
- Hu, Y.; Li, L.; Zhao, J.; Huang, Y.C.; Kuo, C.Y.; Zhou, J.; Fan, Y.; Lin, H.J.; Dong, C.L.; Pao, C.W.; et al. Large current density for oxygen evolution from pyramidally-coordinated Co oxide. Appl. Catal. B Environ. 2023, 333, 122785. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, T.; Yu, L.; Zeng, W.; Zhang, Y.; Ke, B.; Hussain, S.; Lin, L.; Peng, X. Low-cost and high-performance electrode materials based on BiCoO3 microspheres. Ceram. Int. 2017, 43, 2956–2961. [Google Scholar] [CrossRef]
- Belik, A.A. Solid Solutions between PbVO3 and BiCoO3. Inorg. Chem. 2021, 60, 4957–4965. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, K.; Barone, P.; Picozzi, S. Bulk Rashba effect in multiferroics: A theoretical prediction for BiCoO3. Phys. Rev. B 2019, 100, 245115. [Google Scholar] [CrossRef]
- Tserkovnyak, Y.; Xiao, J. Energy storage via topological spin textures. Phys. Rev. Lett. 2018, 121, 127701. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.S.; Gu, M.; Verma, M.; Harbola, V.; Wang, B.Y.; Lu, D.; Vailionis, A.; Hikita, Y.; Pentcheva, R.; Rondinelli, J.M.; et al. Extreme tensile strain states in La0.7Ca0.3MnO3 membranes. Science 2020, 368, 71–76. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef]
- Chen, X.Y.; Chen, L.J.; Yang, X.B.; Zhao, Y.J.; Ding, H.C.; Duan, C.G. Tuning the polarization and magnetism in BiCoO3 by strain and oxygen vacancy effect: A first-principle study. J. Appl. Phys. 2012, 111, 013901. [Google Scholar] [CrossRef]
- Yang, Y.; Ren, W.; Stengel, M.; Yan, X.; Bellaiche, L. Revisiting properties of ferroelectric and multiferroic thin films under tensile strain from first principles. Phys. Rev. Lett. 2012, 109, 057602. [Google Scholar] [CrossRef]
- Yang, Y.; Stengel, M.; Ren, W.; Yan, X.H.; Bellaiche, L. Epitaxial short-period PbTiO3/BiFeO3 superlattices studied by first-principles calculations. Phys. Rev. B 2012, 86, 144114. [Google Scholar] [CrossRef]
- Tian, H.; Kuang, X.Y.; Mao, A.J.; Yang, Y.; Xiang, H.; Xu, C.; Sayedaghaee, S.O.; Íñiguez, J.; Bellaiche, L. Novel type of ferroelectricity in brownmillerite structures: A first-principles study. Phys. Rev. Mater. 2018, 2, 084402. [Google Scholar] [CrossRef]
- Tian, H.; Bellaiche, L.; Yang, Y. Diversity of structural phases and resulting control of properties in brownmillerite oxides: A first-principles study. Phys. Rev. B 2019, 100, 220103. [Google Scholar] [CrossRef]
- Tian, H.; Mao, A.J.; Zhao, H.J.; Cui, Y.; Li, H.; Kuang, X.Y. Large polarization and dielectric response in epitaxial SrZrO3 films. Phys. Chem. Chem. Phys. 2016, 18, 7680–7687. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.; Prosandeev, S.; Xu, B.; Xu, C.; Bellaiche, L. Properties of (001) NaNbO3 films under epitaxial strain: A first-principles study. Phys. Rev. B 2021, 103, 094103. [Google Scholar] [CrossRef]
- Resta, R.; Posternak, M.; Baldereschi, A. Towards a quantum theory of polarization in ferroelectrics: The case of KNbO3. Phys. Rev. Lett. 1993, 70, 1010. [Google Scholar] [CrossRef]
- King-Smith, R.; Vanderbilt, D. Theory of polarization of crystalline solids. Phys. Rev. B 1993, 47, 1651. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Neaton, J.; Cohen, M.H.; Vanderbilt, D.; Homes, C. First-principles study of the structure and lattice dielectric response of CaCu3Ti4O12. Phys. Rev. B 2002, 65, 214112. [Google Scholar] [CrossRef]
- Stokes, H.T.; Hatch, D.M. FINDSYM: Program for identifying the space-group symmetry of a crystal. J. Appl. Crystallogr. 2005, 38, 237–238. [Google Scholar] [CrossRef]
- Goldschmidt, V. The laws of crystal chemistry. Naturwissenschaften 1926, 14, 477–485. [Google Scholar] [CrossRef]
- Lufaso, M.W.; Woodward, P.M. Prediction of the crystal structures of perovskites using the software program SPuDS. Acta Crystallogr. Sect. B Struct. Sci. 2001, 57, 725–738. [Google Scholar] [CrossRef] [PubMed]
- Brown, I.D. Bond valences—A simple structural model for inorganic chemistry. Chem. Soc. Rev. 1978, 7, 359–376. [Google Scholar] [CrossRef]
- Belik, A.A.; Iikubo, S.; Kodama, K.; Igawa, N.; Shamoto, S.I.; Niitaka, S.; Azuma, M.; Shimakawa, Y.; Takano, M.; Izumi, F.; et al. Neutron powder diffraction study on the crystal and magnetic structures of BiCoO3. Chem. Mater. 2006, 18, 798–803. [Google Scholar] [CrossRef]
- Schlom, D.G.; Chen, L.Q.; Eom, C.B.; Rabe, K.M.; Streiffer, S.K.; Triscone, J.M. Strain tuning of ferroelectric thin films. Annu. Rev. Mater. Res. 2007, 37, 589–626. [Google Scholar] [CrossRef]
- Chen, L.; Yang, Y.; Meng, X. Giant electric-field-induced strain in lead-free piezoelectric materials. Sci. Rep. 2016, 6, 25346. [Google Scholar] [CrossRef]
- Scott, J.F. Iso-Structural Phase Transitions in BiFeO3. Adv. Mater. 2010, 22, 2106–2107. [Google Scholar] [CrossRef]
- Cowley, R. Acoustic phonon instabilities and structural phase transitions. Phys. Rev. B 1976, 13, 4877. [Google Scholar] [CrossRef]
- Glazer, A.M. The classification of tilted octahedra in perovskites. Acta Crystallogr. Sect. Struct. Crystallogr. Cryst. Chem. 1972, 28, 3384–3392. [Google Scholar] [CrossRef]
- Metropolis, N.; Ulam, S. The monte carlo method. J. Am. Stat. Assoc. 1949, 44, 335–341. [Google Scholar] [CrossRef]
- Fan, F.; Li, Z.; Zhao, Z.; Yang, K.; Wu, H. Unusual high-spin Fe 5+-Ni 3+ state and strong ferromagnetism in the mixed perovskite SrFe0.5Ni0.5O3. Phys. Rev. B 2016, 94, 214401. [Google Scholar] [CrossRef]
- Zhao, H.J.; Ren, W.; Chen, X.M.; Bellaiche, L. Effect of chemical pressure, misfit strain and hydrostatic pressure on structural and magnetic behaviors of rare-earth orthochromates. J. Phys. Condens. Matter 2013, 25, 385604. [Google Scholar] [CrossRef] [PubMed]
Phase | a | n | a | b | c | |||
---|---|---|---|---|---|---|---|---|
3.72 | 5 | 3.718 | 3.718 | 4.817 | 90 | 90 | 90 | |
-(I) | 4.03 | 20 | 9.809 | 5.699 | 5.699 | 90 | 124.75 | 90 |
-(II) | 4.18 | 20 | 9.678 | 5.911 | 5.911 | 90 | 127.26 | 90 |
4.47 | 10 | 3.769 | 6.321 | 6.321 | 90 | 90 | 90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, H.; Cui, S.; Fu, L.; Zhang, H.; Li, C.; Cui, Y.; Mao, A. Strain-Induced Structural Phase Transitions in Epitaxial (001) BiCoO3 Films: A First-Principles Study. Nanomaterials 2023, 13, 2342. https://doi.org/10.3390/nano13162342
Tian H, Cui S, Fu L, Zhang H, Li C, Cui Y, Mao A. Strain-Induced Structural Phase Transitions in Epitaxial (001) BiCoO3 Films: A First-Principles Study. Nanomaterials. 2023; 13(16):2342. https://doi.org/10.3390/nano13162342
Chicago/Turabian StyleTian, Hao, Shuqi Cui, Long Fu, Hongwei Zhang, Chenggang Li, Yingqi Cui, and Aijie Mao. 2023. "Strain-Induced Structural Phase Transitions in Epitaxial (001) BiCoO3 Films: A First-Principles Study" Nanomaterials 13, no. 16: 2342. https://doi.org/10.3390/nano13162342
APA StyleTian, H., Cui, S., Fu, L., Zhang, H., Li, C., Cui, Y., & Mao, A. (2023). Strain-Induced Structural Phase Transitions in Epitaxial (001) BiCoO3 Films: A First-Principles Study. Nanomaterials, 13(16), 2342. https://doi.org/10.3390/nano13162342