Studies on the Functional Properties of Titanium Dioxide Nanoparticles Distributed in Silyl–Alkyl Bridged Polyaniline-Based Nanofluids
Abstract
:1. Introduction
2. Methodology
2.1. Materials
2.2. Preparation of T-PSA NC-Based NFs
2.2.1. Step 1: Preparation of T-PSA NCs
2.2.2. Step 2: Formulation of T-PSA NC-Based NFs
2.3. Characterization of Properties of T-PSA NC-Based NFs
3. Results and Discussion
3.1. Morphology and Microstructure of T-PSA NC
3.2. Importance of EG as Base Fluid for T-PSA NC
3.3. Thermophysical Properties of T-PSA NC in NF
3.3.1. Viscosity
3.3.2. Density
3.3.3. Ultrasonic Velocity (USV) Measurements
3.3.4. Refractive Index
3.3.5. Thermal Conductivity
3.4. Molecular Interaction Properties
3.5. Particle Size Measurements
3.6. Zeta Potential and Stability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mousavi Ajarostaghi, S.S.; Zaboli, M.; Javadi, H.; Badenes, B.; Urchueguia, J.F. A review of recent passive heat transfer enhancement methods. Energies 2022, 15, 986. [Google Scholar] [CrossRef]
- Chen, R.; Wang, Y.; Jiang, L.; Min, R.; Kang, H.; Chen, Z.; Wang, T. Enhancing thermoelectric properties of MCoSb-based alloys by entropy-driven energy-filtering effects and band engineering. Mater. Today Phys. 2023, 30, 100957. [Google Scholar] [CrossRef]
- Asadi, A.; Asadi, M.; Rezaniakolaei, A.; Rosendah, L.A.; Afrand, M.; Wongwises, S. Heat transfer efficiency of Al2O3-MWCNT/thermal oil hybrid nanofluid as a cooling fluid in thermal and energy management applications: An experimental and theoretical investigation. Int. J. Heat Mass Transf. 2018, 117, 474–486. [Google Scholar] [CrossRef]
- Ouikhalfan, M.; Labihi, A.; Belaqziz, M.; Chehouani, H.; Benhamou, B.; Sarı, A.; Belfkira, A. Stability and thermal conductivity enhancement of aqueous nanofluid based on surfactant-modified TiO2. J. Dispers. Sci. Technol. 2019, 41, 374–382. [Google Scholar] [CrossRef]
- Taylor, R.A.; Phelan, P.E. Pool boiling of nanofluids: Comprehensive review of existing data and limited new data. Int. J. Heat Mass Transf. 2009, 52, 5339–5347. [Google Scholar] [CrossRef]
- Witharana, S. Thermal Transport in Nanofluids: Boiling Heat Transfer. Ph.D. Thesis, University of Leeds, Leeds, UK, 2011. Available online: http://etheses.whiterose.ac.uk/1648/ (accessed on 13 June 2023).
- Lee, S.; Choi, S.U.S.; Li, S.; Eastman, J.A. Measuring thermal conductivity of fluids containing oxide nanoparticles. ASME J. Heat Transf. 1999, 121, 280–289. [Google Scholar] [CrossRef]
- Xie, H.; Wang, J.; Xi, T.; Ai, F. Thermal conductivity enhancement of suspensionscontaining nanosized alumina particles. J. Appl. Phys. 2002, 91, 4568–4572. [Google Scholar] [CrossRef]
- Das, S.K.; Putra, N.; Thiesen, P.; Roetzel, W. Temperature dependence of thermal conductivity enhancement of nanofluids. Trans. ASME J. Heat Transfer 2003, 125, 567–574. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.R.I.; Salam, B. A review on nanofluid: Preparation, stability, thermophysical properties, heat transfer characteristics and application. SN Appl. Sci. 2020, 2, 1636. [Google Scholar] [CrossRef]
- Esfe, M.H.; Afrand, M.; Yan, W.M.; Akbari, M. Applicability of artificial neural network and nonlinear regression to predict thermal conductivity modeling of Al2O3–water nanofluids using experimental data. Int. Commun. Heat Mass Transf. 2015, 66, 246–249. [Google Scholar] [CrossRef]
- Jaiswal, A.K.; Wan, M.; Singh, S.; Singh, D.K.; Yadav, R.R.; Singh, D.; Mishra, G. Experimental investigation of thermal conduction in copper-palladium nanofluids. J. Nanofluids 2016, 5, 496–501. [Google Scholar] [CrossRef]
- Choudhary, R.; Khurana, D.; Kumar, A.; Subudhi, S. Stability analysis of Al2O3/water nanofluids. J. Exp. Nanosci. 2017, 12, 140–151. [Google Scholar] [CrossRef] [Green Version]
- Amiri, M.; Movahedirad, S.; Manteghi, F. Thermal conductivity of water and ethylene glycol nanofluids containing new modified surface SiO2-Cu nanoparticles: Experimental and modeling. Appl. Therm. Eng. 2016, 108, 48–53. [Google Scholar] [CrossRef]
- Yang, X.; Liu, Z.H. A kind of nanofluid consisting of surface-functionalized nanoparticles. Nanoscale Res. Lett. 2010, 5, 1324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamad, E.M.; Khaffaf, A.; Yasin, O.; Abu El-Rub, Z.; Al-Gharabli, S.; Al-Kouz, W.; Chamkha, A.J. Review of nanofluids and their biomedical applications. J. Nanofluids 2021, 10, 463–477. [Google Scholar] [CrossRef]
- Arifutzzaman, A.; Saidur, R.; Aslfattahi, N. MXene and functionalized graphene hybridized nanoflakes based silicone-oil nanofluids as new class of media for micro-cooling application. Ceram. Int. 2023, 49, 5922–5935. [Google Scholar] [CrossRef]
- Yu, Q.; Kim, Y.J.; Ma, H. Nanofluids with plasma treated diamond nanoparticles. Appl. Phys. Lett. 2008, 92, 103111. [Google Scholar] [CrossRef]
- Zhang, H.; Qing, S.; Gui, Q.; Zhang, X.; Zhang, A. Effects of surface modification and surfactants on stability and thermophysical properties of TiO2/water nanofluids. J. Mol. Liq. 2022, 349, 118098. [Google Scholar] [CrossRef]
- Arunkumar, T.; Raj, K.; Denkenberger, D.; Velraj, R. Heat carrier nanofluids in solar still—A review. Desalin Water Treat. 2018, 130, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Subramani, J.; Nagarajan, P.K.; Mahian, O.; Sathyamurthy, R. Efficiency and heat transfer improvements in a parabolic trough solar collector using TiO2 nanofluids under turbulent flow regime. Renew. Energy 2018, 119, 19–31. [Google Scholar] [CrossRef]
- Hosseini, S.M.S.; Dehaj, M.S. Assessment of TiO2 water-based nanofluids with two distinct morphologies in a U type evacuated tube solar collector. Appl. Therm. Eng. 2021, 182, 116086. [Google Scholar] [CrossRef]
- Naina, H.K.; Gupta, R.; Setia, H.; Wanchoo, R.K. Viscosity and specific volume of TiO2/water nanofluid. J. Nanofluids 2012, 1, 161–165. [Google Scholar] [CrossRef]
- Ghadimi, A.; Metselaar, I.H. The influence of surfactant and ultrasonic processing on improvement of stability, thermal conductivity and viscosity of titania nanofluid. Exp. Therm. Fluid Sci. 2013, 51, 1–9. [Google Scholar] [CrossRef]
- Shao, X.; Chen, Y.; Mo, S.; Cheng, Z.; Yin, T. Dispersion stability of TiO2-H2O nanofluids containing mixed nanotubes and nanosheets. Energy Procedia 2015, 75, 2049–2054. [Google Scholar] [CrossRef] [Green Version]
- Sabzi, M.; Mirabedini, S.M.; Zohuriaan-Mehr, J.; Atai, M. Surface modification of TiO2 nano-particles with silane coupling agent and investigation of its effect on the properties of polyurethane composite coating. Prog. Org. Coat. 2009, 65, 222–228. [Google Scholar] [CrossRef]
- Zhao, J.; Milanova, M.; Warmoeskerken, M.M.; Dutschk, V. Surface modification of TiO2 nanoparticles with silane coupling agents. Colloids Surf. A Physicochem. Eng. Asp. 2012, 413, 273–279. [Google Scholar] [CrossRef]
- Zheng, W.; Huang, J.; Li, S.; Ge, M.; Teng, L.; Chen, Z.; Lai, Y. Advanced materials with special wettability toward intelligent oily wastewater remediation. ACS Appl. Mater. Interfaces 2020, 13, 67–87. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.B.; Tan, L.; Liu, Z.Q.; Chen, S.; Qin, J.H.; Tang, J.J.; Li, N. One-pot synthesis of ultrafine TiO2 nanoparticles with enhanced thermal conductivity for nanofluid applications. Adv. Powder Technol. 2016, 27, 299–304. [Google Scholar] [CrossRef]
- Zhang, T.; Wu, X.; Luo, T. Polymer nanofibers with outstanding thermal conductivity and thermal stability: Fundamental linkage between molecular characteristics and macroscopic thermal properties. J. Phys. Chem. C 2014, 118, 21148–21159. [Google Scholar] [CrossRef] [Green Version]
- Heeger, A.J.; Sariciftci, N.S.; Namdas, E.B. Semiconducting and Metallic Polymers; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- Henry, A. Thermal transport in polymers. Annu. Rev. Heat Transf. 2014, 17, 485–520. [Google Scholar] [CrossRef]
- Feng, L.; Wu, R.; Liu, C.; Lan, J.; Lin, Y.H.; Yang, X. Facile green vacuum-assisted method for polyaniline/SWCNT hybrid films with enhanced thermoelectric performance by interfacial morphology control. ACS Appl. Energy Mater. 2021, 4, 4081–4089. [Google Scholar] [CrossRef]
- Wan, M.; Yadav, R.R.; Yadav, K.L.; Yadaw, S.B. Synthesis and experimental investigation on thermal conductivity of nanofluids containing functionalized Polyaniline nanofibers. Exp. Therm. Fluid Sci. 2012, 41, 158–164. [Google Scholar] [CrossRef]
- Bhanvase, B.A.; Sayankar, S.D.; Kapre, A.; Fule, P.J.; Sonawane, S.H. Experimental investigation on intensified convective heat transfer coefficient of water based PANI nanofluid in vertical helical coiled heat exchanger. Appl. Therm. Eng. 2018, 128, 134–140. [Google Scholar] [CrossRef]
- Gurav, P.; Naik, S.; Bhanvase, B.A.; Pinjari, D.V.; Sonawane, S.H.; Ashokkumar, M. Heat transfer intensification using polyaniline based nanofluids: Preparation and application. Chem. Eng. Process. Process Intensif. 2015, 95, 195–201. [Google Scholar] [CrossRef]
- Xu, Y.; Kraemer, D.; Song, B.; Jiang, Z.; Zhou, J.; Loomis, J.; Chen, G. Nanostructured polymer films with metal-like thermal conductivity. Nat. Commun. 2019, 10, 1771. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Cui, R.; Zhang, X.; Koumoto, K.; Wan, C. Polymer/Carbon Composites with Versatile Interfacial Interactions for High Performance Carbon-Based Thermoelectrics: Principles and Applications. Adv. Funct. Mater. 2023, 33, 2208813. [Google Scholar] [CrossRef]
- Sarkar, K.; Debnath, A.; Deb, K.; Bera, A.; Saha, B. Effect of NiO incorporation in charge transport of polyaniline: Improved polymer based thermoelectric generator. Energy 2019, 177, 203–210. [Google Scholar] [CrossRef]
- Bhanvase, B.A.; Kamath, S.D.; Patil, U.P.; Patil, H.A.; Pandit, A.B.; Sonawane, S.H. Intensification of heat transfer using PANI nanoparticles and PANI-CuO nanocomposite based nanofluids. Chem. Eng. Process. Process Intensif. 2016, 104, 172–180. [Google Scholar] [CrossRef]
- Sofiah, A.G.N.; Samykano, M.; Shahabuddin, S.; Kadirgama, K.; Pandey, A.K. A comparative experimental study on the physical behavior of mono and hybrid RBD palm olein based nanofluids using CuO nanoparticles and PANI nanofibers. Int. Commun. Heat Mass Transf. 2021, 120, 105006. [Google Scholar] [CrossRef]
- Dadkhah, S.; Rajabi, Y.; Zare, E.N. Thermal Lensing Effect in Laser Nanofluids Based on Poly (aniline-co-ortho phenylenediamine)@TiO2 Interaction. J. Electron. Mater. 2021, 50, 4896–4907. [Google Scholar] [CrossRef]
- Chatterjee, M.J.; Banerjee, D.; Chatterjee, K. Composite of single walled carbon nanotube and sulfosalicylic acid doped polyaniline: A thermoelectric material. Mater. Res. Express 2016, 3, 085009. [Google Scholar] [CrossRef]
- Deng, L.; Chen, G. Recent progress in tuning polymer oriented microstructures for enhanced thermoelectric performance. Nano Energy 2021, 80, 105448. [Google Scholar] [CrossRef]
- Ju, H.; Park, D.; Kim, J. Conductive polymer based high-performance hybrid thermoelectrics: Polyaniline/tin (II) sulfide nanosheet composites. Polymer 2019, 160, 24–29. [Google Scholar] [CrossRef]
- Hamid, K.A.; Azmi, W.H.; Mamat, R.; Sharma, K.V. Heat transfer performance of TiO2–SiO2 nanofluids in a tube with wire coil inserts. Appl. Therm. Eng. 2019, 152, 275–286. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, T.; Zhang, D.; Wang, Q. Experimental investigation of thermal and electrical conductivity of silicon oxide nanofluids in ethylene glycol/water mixture. Int. J. Heat Mass Transf. 2018, 117, 280–286. [Google Scholar] [CrossRef]
- Li, X.; Wang, D.; Cheng, G.; Luo, Q.; An, J.; Wang, Y. Preparation of polyaniline-modified TiO2 nanoparticles and their photocatalytic activity under visible light illumination. Appl. Catal. B Environ. 2008, 81, 267–273. [Google Scholar] [CrossRef]
- Xie, H.; Wang, J.; Xi, T.; Liu, Y.; Ai, F. Dependence of the thermal conductivity of nanoparticle-fluid mixture on the base fluid. J. Mater. Sci. Lett. 2002, 21, 1469–1471. [Google Scholar] [CrossRef]
- Sharma, P.; Baek, I.H.; Cho, T.; Park, S.; Lee, K.B. Enhancement of thermal conductivity of ethylene glycol based silver nanofluids. Powder Technol. 2011, 208, 7–19. [Google Scholar] [CrossRef]
- Sundar, L.S.; Mesfin, S.; Ramana, E.V.; Said, Z.; Sousa, A.C. Experimental investigation of thermo-physical properties, heat transfer, pumping power, entropy generation, and exergy efficiency of nanodiamond+ Fe3O4/60: 40% water-ethylene glycol hybrid nanofluid flow in a tube. Therm. Sci. Eng. Prog. 2021, 21, 100799. [Google Scholar] [CrossRef]
- Konyushenko, E.N.; Reynaud, S.; Pellerin, V.; Trchová, M.; Stejskal, J.; Sapurina, I. Polyaniline prepared in ethylene glycol or glycerol. Polymer 2011, 52, 1900–1907. [Google Scholar] [CrossRef]
- Qiu, W.; Ma, L.; Gan, M.; Yan, J.; Zeng, S.; Li, Z.; Bai, Y. Synthesis of uniform polyaniline nanorods with the assistance of ethylene glycol. J. Nanoparticle Res. 2014, 16, 2371. [Google Scholar] [CrossRef]
- Gomes, T.C.; Constantino, C.J.L.; Lopes, E.M.; Job, A.E.; Alves, N. Thermal inkjet printing of polyaniline on paper. Thin. Solid Film. 2012, 520, 7200–7204. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, D.; Zhou, Y.; Du, H.; Xia, C. Supercapacitance of polypyrrole/titania/polyaniline coaxial nanotube hybrid. Synth. Met. 2014, 198, 59–66. [Google Scholar] [CrossRef]
- Wang, H.; Hao, Q.; Yang, X.; Lu, L.; Wang, X. A nanostructured graphene/polyaniline hybrid material for supercapacitors. Nanoscale 2010, 2, 2164–2170. [Google Scholar] [CrossRef]
- Dhand, C.; Das, M.; Sumana, G.; Srivastava, A.K.; Pandey, M.K.; Kim, C.G.; Malhotra, B.D. Preparation, characterization and application of polyaniline nanospheres to biosensing. Nanoscale 2010, 2, 747–754. [Google Scholar] [CrossRef] [Green Version]
- Rudyak, V.Y.; Tretiakov, D.S. Viscosity and rheology of the ethylene glycol based nanofluids with single-walled carbon nanotubes. J. Phys. Conf. Ser. 2019, 1382, 012100. [Google Scholar] [CrossRef] [Green Version]
- Gast, R.G.; Landa, E.R.; Meyer, G.W. The interaction of water with goethite (α-FeOOH) and amorphous hydrated ferric oxide surfaces. Clays Clay Miner. 1974, 22, 31–39. [Google Scholar] [CrossRef]
- Christensen, G.; Younes, H.; Hong, H.; Smith, P. Effects of solvent hydrogen bonding, viscosity, and polarity on the dispersion and alignment of nanofluids containing Fe2O3 nanoparticles. J. Appl. Phys. 2015, 118, 214302. [Google Scholar] [CrossRef]
- Richmond, W.R.; Jones, R.L.; Fawell, P.D. The relationship between particle aggregation and rheology in mixed silica–titania suspensions. Chem. Eng. J. 1998, 71, 67–75. [Google Scholar] [CrossRef]
- Eshgarf, H.; Afrand, M. An experimental study on rheological behavior of non-Newtonian hybrid nano-coolant for application in cooling and heating systems. Exp. Therm. Fluid Sci. 2016, 76, 221–227. [Google Scholar] [CrossRef]
- Das, K.; Putra, N.; Roetzel, W. Pool boiling characteristics of nanofluids. Int. J. Heat Mass Transf. 2003, 46, 851–862. [Google Scholar] [CrossRef]
- Sarkar, S.; Ghosh, N.K. Effect of silver nanoparticle volume fraction on thermal conductivity, specific heat and viscosity of ethylene glycol base silver nanofluid: A molecular dynamics investigation. J. Mol. Liq. 2023, 378, 121635. [Google Scholar] [CrossRef]
- Klazly, M.; Bognár, G. A novel empirical equation for the effective viscosity of nanofluids based on theoretical and empirical results. Int. Commun. Heat Mass Transf. 2022, 135, 106054. [Google Scholar] [CrossRef]
- Loulijat, H.; Moustabchir, H. Numerical study of the effects of Brownian motion and interfacial layer on the viscosity of nanofluid (Au-H2O). J. Mol. Liq. 2022, 350, 118221. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, X.; Gao, H.; Yan, Y. Experimental study of viscosity and thermal conductivity of water based Fe3O4 nanofluid with highly disaggregated particles. Case Stud. Therm. Eng. 2022, 35, 102160. [Google Scholar] [CrossRef]
- Qamar, A.; Shaukat, R.; Anwar, Z.; Amjad, M.; Farooq, M.; Abbas, M.M.; Soudagar, M.E.M. Heat transfer and pressure drop characteristics of ZnO/DIW based nanofluids in small diameter compact channels: An experimental study. Case Stud. Therm. Eng. 2022, 39, 102441. [Google Scholar]
- Vajjha, R.S.; Das, D.K.; Mahagaonkar, B.M. Density measurement of different nanofluids and their comparison with theory. Pet. Sci. Technol. 2009, 27, 612–624. [Google Scholar] [CrossRef]
- Zhelezny, V.P.; Motovoy, I.V.; Ustyuzhanin, E.E. Prediction of nanofluids properties: The density and the heat capacity. J. Phys. Conf. Ser. 2017, 891, 012347. [Google Scholar] [CrossRef] [Green Version]
- Ullah, A.; Fatima, N.; Alharbi, K.A.M.; Elattar, S.; Khan, W. A Numerical Analysis of the Hybrid Nanofluid (Ag+ TiO2+ Water) Flow in the Presence of Heat and Radiation Fluxes. Energies 2023, 16, 1220. [Google Scholar] [CrossRef]
- Said, Z.; Cakmak, N.K.; Sharma, P.; Sundar, L.S.; Inayat, A.; Keklikcioglu, O.; Li, C. Synthesis, stability, density, viscosity of ethylene glycol-based ternary hybrid nanofluids: Experimental investigations and model-prediction using modern machine learning techniques. Powder Technol. 2022, 400, 117190. [Google Scholar] [CrossRef]
- Rashmi, M.; Padmanaban, R.; Karthikeyan, V.; Roy, V.A.L.; Gopalan, A.I.; Saianand, G.; Kim, W.J.; Venkatramanan, K. A Comparative Evaluation of Physicochemical Properties and Photocatalytic Efficiencies of Cerium Oxide and Copper Oxide Nanofluids. Catalysts 2020, 10, 34. [Google Scholar]
- Rashmi, M.; Karthikeyan, V.; Nandakumar, V.; Chandravadhana, A.; Roy, V.A.L.; Gopalan, A.I.; Saianand, G.; Sonar, P.; Lee, K.P.; Kim, W.J.; et al. Polyethylene Glycol Coated Magnetic Nanoparticles: Hybrid Nanofluid Formulation, Properties and Drug Delivery Prospects. Nanomaterials 2021, 11, 440. [Google Scholar]
- Leena, M.; Srinivasan, S. Synthesis and ultrasonic investigations of titanium oxide nanofluids. J. Mol. Liq. 2015, 206, 103–109. [Google Scholar] [CrossRef]
- Fan, X.; Chen, H.; Ding, Y.; Plucinski, P.K.; Lapkin, A.A. Potential of ‘nanofluids’ to further intensify microreactors. Green Chem. 2008, 10, 670–677. [Google Scholar] [CrossRef]
- Chen, H.; Ding, Y.; Tan, C. Rheological behaviour of nanofluids. New J. Phys. 2007, 9, 367. [Google Scholar] [CrossRef]
- Lee, G.J.; Kim, C.K.; Lee, M.K.; Rhee, C.K. Characterization of ethylene glycol based Tio. Rev. Adv. Mater. Sci 2011, 28, 126–129. [Google Scholar]
- Cabaleiro, D.; Pastoriza-Gallego, M.J.; Gracia-Fernández, C.; Piñeiro, M.M.; Lugo, L. Rheological and volumetric properties of TiO2-ethylene glycol nanofluids. Nanoscale Res. Lett. 2013, 8, 286. [Google Scholar] [CrossRef] [Green Version]
- Sahid, N.S.M.; Rahman, M.M.; Kadirgama, K.; Maleque, M.A. Experimental investigation on properties of hybrid nanofluids (TiO2 and ZnO) in water–ethylene glycol mixture. J. Mech. Eng. Sci. 2017, 11, 3087–3094. [Google Scholar] [CrossRef]
- Nabeel Rashin, M.; Hemalatha, J. Magnetic and ultrasonic investigations on magnetite nanofluids. Ultrasonics 2012, 52, 1024–1029. [Google Scholar] [CrossRef]
- Leena, M.; Srinivasan, S. Effects of rare earth doped on thermal conductivity of ZnO-water nanofluid by ultrasonic velocity measurements. Mat. Lett. 2018, 219, 220–224. [Google Scholar] [CrossRef]
- Anu, K.; Hemalatha, J. Ultrasonic and magnetic investigations of the molecular interactions in zinc doped magnetite Nanofluids. J. Mol. Liq. 2018, 256, 213–223. [Google Scholar]
- Fujimoto, K.; Shibata, A.; Torii, S. An experimental and numerical study of turbulent heat transfer enhancement for graphene nanofluids produced by pulsed discharge. Int. J. 2022, 16, 100219. [Google Scholar] [CrossRef]
- Sarode, H.A.; Barai, D.P.; Bhanvase, B.A.; Ugwekar, R.P.; Saharan, V. Investigation on preparation of graphene oxide-CuO nanocomposite based nanofluids with the aid of ultrasound assisted method for intensified heat transfer properties. Mater. Chem. Phys. 2020, 251, 123102. [Google Scholar] [CrossRef]
- Ravichandran, S. Acoustic and thermodynamic properties of cholesterol in ethanol and1-propanol solution in different concentration at 303K. Res. J. Chem. Sci. 2015, 1, 12–17. [Google Scholar]
- Yadav, R.R.; Mishra, G.; Yadawa, P.K.; Kor, S.K.; Gupta, A.K.; Raj, B.; Jayakumar, T. Ultrasonic properties of nanoparticles-liquid suspensions. Ultrasonics 2008, 48, 591–593. [Google Scholar] [CrossRef] [PubMed]
- Wadatkar, N.S.; Waghuley, S.A. Complex optical studies on conducting polyindole as-synthesized through chemical route. Egypt. J. Basic Appl. Sci. 2015, 2, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.B.; Lee, S.; Lee, K.; Lee, I.; Lee, B.J. Determination of absorption coefficient of nanofluids with unknown refractive index from reflection and transmission spectra. J. Quant. Spectrosc. Radiat. Transfer. 2018, 213, 107–112. [Google Scholar] [CrossRef]
- Aziz, S.B. Morphological and Optical Characteristics of Chitosan(1−x): Cuox (4≤ x≤ 12) Based Polymer Nano-Composites: Optical Dielectric Loss as an Alternative Method for Tauc’s Model. Nanomaterials 2017, 7, 444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.G.; Ueda, M. High refractive index polymers: Fundamental research and practical applications. J. Mater. Chem. 2009, 19, 8907–8919. [Google Scholar] [CrossRef]
- Guan, C.; Lü, C.; Cheng, Y.; Song, S.; Yang, B. A facile one-pot route to transparent polymer nanocomposites with high ZnS nanophase contents via in situ bulk polymerization. J. Mater. Chem. 2009, 19, 617–621. [Google Scholar] [CrossRef]
- Chau, J.L.H.; Lin, Y.M.; Li, A.K.; Su, W.F.; Chang, K.S.; Hsu, S.L.C.; Li, T.L. Transparent high refractive index nanocomposite thin films. Mater. Lett. 2007, 61, 2908–2910. [Google Scholar] [CrossRef]
- Rao, Y.; Chen, S. Molecular composites comprising TiO2 and their optical properties. Macromolecules 2008, 41, 4838–4844. [Google Scholar] [CrossRef]
- Tao, P.; Li, Y.; Rungta, A.; Viswanath, A.; Gao, J.; Benicewicz, B.C.; Schadler, L.S. TiO2 nanocomposites with high refractive index and transparency. J. Mater. Chem. 2011, 21, 18623–18629. [Google Scholar] [CrossRef]
- Younes, H.; Mao, M.; Murshed, S.S.; Lou, D.; Hong, H.; Peterson, G.P. Nanofluids: Key parameters to enhance thermal conductivity and its applications. Appl. Therm. Eng. 2022, 207, 118202. [Google Scholar] [CrossRef]
- Ambreen, T.; Kim, M.H. Influence of particle size on the effective thermal conductivity of nanofluids: A critical review. Appl. Energy 2020, 264, 114684. [Google Scholar] [CrossRef]
- Esfe, M.H.; Afrand, M. An updated review on the nanofluids characteristics: Preparation and measurement methods of nanofluids thermal conductivity. J. Therm. Anal. Calorim. 2019, 138, 4091–4101. [Google Scholar] [CrossRef]
- Agarwal, R.; Verma, K.; Agrawal, N.K.; Singh, R. Sensitivity of thermal conductivity for Al2O3 nanofluids. Exp. Therm. Fluid Sci. 2017, 80, 19–26. [Google Scholar] [CrossRef]
- Yu, W.; Xie, H.; Chen, L.; Li, Y. Enhancement of thermal conductivity of kerosene-based Fe3O4 nanofluids prepared via phase-transfer method. Colloids Surf. A Physicochem. Eng. Asp. 2010, 355, 109–113. [Google Scholar] [CrossRef]
- Hamid, K.A.; Azmi, W.H.; Nabil, M.F.; Mamat, R. Improved thermal conductivity of TiO2–SiO2 hybrid nanofluid in ethylene glycol and water mixture. Mater. Sci. Eng. 2017, 257, 012067. [Google Scholar] [CrossRef]
- Murshed, S.M.S.; Leong, K.C.; Yang, C. Investigations of thermal conductivity and viscosity of nanofluids. Int. J. Therm. Sci. 2008, 47, 560–568. [Google Scholar] [CrossRef]
- Khedkar, R.S.; Shrivastava, N.; Sonawane, S.S.; Wasewar, K.L. Experimental investigations and theoretical determination of thermal conductivity and viscosity of TiO2–ethylene glycol nanofluid. Int. Commun. Heat Mass Transf. 2016, 73, 54–61. [Google Scholar] [CrossRef]
- Alyan, A.; Abdel-Samad, S.; Massoud, A.; Waly, S.A. Characterization and thermal conductivity investigation of Copper-Polyaniline Nano composite synthesized by gamma radiolysis method. Heat Mass Transf. 2019, 55, 2409–2417. [Google Scholar] [CrossRef]
- Keblinski, P.; Prasher, R.; Eapen, J. Thermal conductance of nanofluids: Is the controversy over? J. Nanopart. Res. 2008, 10, 1089–1097. [Google Scholar] [CrossRef]
- Modesto-Lopez, L.B.; Biswas, P. Role of the effective electrical conductivity of nanosuspensions in the generation of TiO2 agglomerates with electrospray. J. Aerosol Sci. 2010, 41, 790–804. [Google Scholar] [CrossRef]
- Sahooli, M.; Sabbaghi, S.; Shariaty Niassar, M. Preparation of CuO/Water Nanofluids Using Polyvinylpyrolidone and a Survey on its Stability and Thermal Conductivity. Int. J. Nanosci. Nanotechnol. 2012, 8, 27–34. [Google Scholar]
- Wang, K.; Ruan, J.; Song, H.; Zhang, J.; Wo, Y.; Guo, S.; Cui, D. Biocompatibility of graphene oxide. Nanoscale Res. Lett. 2011, 6, 8. [Google Scholar] [CrossRef] [Green Version]
- Prasher, R.; Evans, W.; Meakin, P.; Fish, J.; Phelan, P.; Keblinski, P. Effect of aggregation on thermal conduction in colloidal nanofluids. Appl. Phys. Lett. 2006, 89, 143119. [Google Scholar] [CrossRef] [Green Version]
- Lenin, R.; Joy, P.A.; Bera, C. A review of the recent progress on thermal conductivity of nanofluid. J. Mol. Liq. 2021, 338, 116929. [Google Scholar] [CrossRef]
- Das, P.K. A review based on the effect and mechanism of thermal conductivity of normal nanofluids and hybrid nanofluids. J. Mol. Liq. 2017, 240, 420–446. [Google Scholar] [CrossRef]
- Zayan, J.M.; Rasheed, A.K.; John, A.; Faris, W.F.; Aabid, A.; Baig, M.; Alallam, B. Synthesis and Characterization of Novel Ternary-Hybrid Nanoparticles as Thermal Additives. Materials 2023, 16, 173. [Google Scholar] [CrossRef]
- Karthikeyan, N.R.; Philip, J.; Raj, B. Effect of clustering on the thermal conductivity of nanofluids. Mater. Chem. Phys. 2008, 109, 50–55. [Google Scholar] [CrossRef]
- Sai Kumar, V.S.; Rao, K.V. Investigation of Ultrasonic Parameters of ZnO—Ethylene Glycol Nanofluids. J. Ovonic Res. 2017, 13, 91–99. [Google Scholar]
- Kharat, P.B.; Somvanshi, S.B.; Kounsalye, J.S.; Deshmukh, S.S.; Khirade, P.P.; Jadhav, K.M. Temperature dependent viscosity of cobalt ferrite/ethylene glycol ferrofluids. AIP Conf. Proc. 2018, 1942, 050044. [Google Scholar]
- Shamkuwar, P.; Chimankar, O.P. Intermolecular Interaction in the Binary Mixture of Β-Alanine with Water at 323 K. Int. J. Sci. Res. Phy. Appl. Sci. 2014, 1, 14–16. [Google Scholar]
- Venkatramanan, K.; Padmanaban, R.; Arumugam, V. Acoustic, Thermal and molecular interactions of Polyethylene Glycol (2000, 3000, 6000). Phys. Procedia 2015, 70, 1052–1056. [Google Scholar] [CrossRef] [Green Version]
- Pecora, R. Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy; Plenum Press: New York, NY, USA, 1985. [Google Scholar]
- Nickel, C.; Angelstrof, J.; Bienert, R.; Burkart, C.; Gabsch, S.; Giebner, S.; Haase, A.; Hellack, B.; Hollert, H.; Rinke, K.H.; et al. Dynamic light-scattering measurement comparability of nanomaterial suspensions. J. Nanopart. Res. 2014, 16, 2260. [Google Scholar] [CrossRef]
- Domingos, R.F.; Baalousha, M.A.; Nam, Y.J.; Reid, M.M.; Tufenkji, N.; Lead, J.R.; Wilkinson, K.J. Characterizing manufactured nanoparticles in the environment: Multimethod determination of particle sizes. Environ. Sci. Technol. 2009, 43, 7277–7284. [Google Scholar] [CrossRef]
- Fissan, H.; Ristig, S.; Kaminski, H.; Asbach, C.; Epple, M. Comparison of different characterization methods for nanoparticle dispersions before and after aerosolization. Anal. Methods 2014, 6, 7324–7334. [Google Scholar] [CrossRef] [Green Version]
- Sato, K.; Li, J.G.; Kamiya, H.; Ishigaki, T. Ultrasonic dispersion of TiO2 nanoparticles in aqueous suspension. J. Am. Ceram. Soc. 2008, 91, 2481–2487. [Google Scholar] [CrossRef]
- Vandsburger, L. Synthesis and Covalent Surface Modification of Carbon Nanotubes for Preparation of Stabilized Nanofluid Suspensions. Master of Engineering Thesis, McGill University, Montréal, QC, Canada, 2009. Available online: https://escholarship.mcgill.ca/concern/theses/q811km27k (accessed on 13 June 2023).
- Ramadhan, A.I.; Azmi, W.H.; Mamat, R.; Hamid, K.A.; Norsakinah, S. Investigation on stability of tri-hybrid nanofluids in water-ethylene glycol mixture. IOP Conf. Ser. Mater. Sci. Eng. 2019, 469, 012068. [Google Scholar] [CrossRef]
- Madhesh, D.; Parameshwaran, R.; Kalaiselvam, S. Experimental investigation on convective heat transfer and rheological characteristics of Cu–TiO2 hybrid nanofluids. Exp. Therm. Fluid. Sci. 2014, 52, 104. [Google Scholar] [CrossRef]
- Hamid, K.A.; Azmi, W.H.; Nabil, M.F.; Mamat, R.; Sharma, K.V. Experimental investigation of thermal conductivity and dynamic viscosity on nanoparticle mixture ratios of TiO2-SiO2 nanofluids. Int. Commun. Heat. Mass. Transfer 2018, 116, 1143. [Google Scholar] [CrossRef]
- Toghraie, D.; Chaharsoghi, V.A.; Afrand, M. Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluid. J. Thermal. Anal. Calorimetry 2016, 125, 527. [Google Scholar] [CrossRef]
- Mandharea, H.; Barai, D.P.; Bhanvase, B.A.; Saharan, V.K. Preparation and thermal conductivity investigation of reduced graphene oxide-ZnO nanocomposite-based nanofluid synthesised by ultrasound-assisted method. Chem. Process. Intensif. 2016, 104, 172. [Google Scholar] [CrossRef]
- Murshed, S.M.S.; Leong, K.C.; Yang, C. Enhanced thermal conductivity of TiO2—Water based nanofluids. Int. J. Therm. Sci. 2005, 44, 367. [Google Scholar] [CrossRef]
- Qi, C.; Wan, Y.-L.; Li, C.-Y.; Han, D.-T.; Rao, Z.-H. Experimental and numerical research on the flow and heat transfer characteristics of TiO2-water nanofluids in a corrugated tube. Int. J. Heat Mass Transf. 2017, 115, 1072–1084. [Google Scholar] [CrossRef]
- Cabaleiro, D.; Nimo, J.; Pastoriza-Gallego, M.J.; Piñeiro, M.M.; Legido, J.L.; Lugo, L. Thermal conductivity of dry anatase and rutile nano-powders and ethylene and propylene glycol-based TiO2 nanofluids. J. Chem. Thermodyn. 2015, 83, 67–76. [Google Scholar] [CrossRef]
- Reddy, M.C.S.; Rao, V.V. Experimental studies on thermal conductivity of blends of ethylene glycol-water-based TiO2 nanofluids. Int. Commun. Heat MassTransf. 2013, 46, 31–36. [Google Scholar] [CrossRef]
- Zulkeflee, R.; Mama, H. Stability and Thermal Performance of Silica Nanofluid in Water Block Heat Sink. J. Phys. Sci. 2019, 30, 1. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Kalbasi, R.; Nguyen, Q.; Afrand, M. Effects of sonication duration and nanoparticles concentration on thermal conductivity of silica-ethylene glycol nanofluid under different temperatures: An experimental study. Powder Technol. 2020, 367, 464–473. [Google Scholar] [CrossRef]
- Tadjarodi, A.; Zabihi, F.; Afshar, S. Experimental investigation of thermo-physical properties of platelet mesoporous SBA-15 silica particles dispersed in ethylene glycol and water mixture. Ceram. Int. 2013, 39, 7649. [Google Scholar] [CrossRef]
- Bai, Y.; Yang, H.; Ge, C.; He, L.; Song, Q.; Zhang, X. Fabrication of actiniae-like atomically thin hydroxylation boron nitride@polyaniline hierarchical composites with adjustable high thermal conductivity and electrical conductivity. Nanotechnology 2022, 33, 025705. [Google Scholar]
- Chew, T.S.; Hamid, M.A.A. Thermal Conductivity and Specific Heat Capacity of Dodecylbenzenesulfonic Acid-Doped Polyaniline Particles—Water Based Nanofluid. Polymers 2015, 7, 1221–1231. [Google Scholar] [CrossRef] [Green Version]
- Selvam, C.; Lal, D.M.; Harish, S. Thermal conductivity enhancement of ethylene glycol and water with graphene nanoplatelets, Thermochim. Acta 2016, 642, 32–38. [Google Scholar]
- Coccia, G.; Tomassetti, S.; Di Nicola, G. Thermal conductivity of nanofluids: A review of the existing correlations and a scaled semi-empirical equation. Renew. Sustain. Energy Rev. 2021, 151, 111573. [Google Scholar] [CrossRef]
NPAPTMS (mL) | TiO2 NPs (g) | APDS (g) | Designation of Samples |
---|---|---|---|
1.09 | 0.5 | 1.14 | T-PSA-NC-1 |
0.59 | 0.5 | 1.14 | T-PSA-NC-2 |
1.65 | 0.5 | 1.14 | T-PSA-NC-3 |
1.09 | 0.8 | 1.14 | T-PSA-NC-4 |
1.09 | 0.30 | 1.14 | T-PSA-NC-5 |
T-PSA NC with Varying Compositions | Viscosity (×10−3 Nsm−2) | Density (kg/m3) | Ultrasonic Velocity (m/s) | Refractive Index | Thermal Condutivity (W/m/K) |
---|---|---|---|---|---|
T-PSA NC1 | 10.5 | 1203.8 | 1630 | 1.42 | 21.57 |
T-PSA NC2 | 10.7 | 1159.5 | 1640 | 1.43 | 21.18 |
T-PSA NC3 | 10.6 | 1202.3 | 1660 | 1.42 | 21.95 |
T-PSA NC4 | 10.4 | 1218.0 | 1651 | 1.42 | 22.02 |
T-PSA NC5 | 10.6 | 1183.8 | 1660 | 1.41 | 21.73 |
PSA | 10.7 | 1182.8 | 1637 | 1.42 | 21.41 |
Name of the Sample | Concentration (%) | Adiabatic Compressibility (×10−10 m2N−1) | Intermolecular Free Length (×10−11 m) | Free Volume (×10−9 m3mol−1) | Internal Pressure (×109 Pa) | Specific Acoustical Impedance (×106 kgm−2s−1) | Surface Tension (N/m) | Relaxation Time (×10−12 s) |
---|---|---|---|---|---|---|---|---|
T-PSA-NC-1 | 0.1 | 3.43 | 3.84 | 3.27 | 2.17 | 1.79 | 43.22 | 4.89 |
0.5 | 3.34 | 3.79 | 3.20 | 2.21 | 1.83 | 43.50 | 4.85 | |
1 | 3.26 | 3.75 | 3.09 | 2.25 | 1.87 | 43.78 | 4.87 | |
1.5 | 3.21 | 3.72 | 2.99 | 2.29 | 1.89 | 44.04 | 4.92 | |
2 | 3.16 | 3.69 | 2.89 | 2.33 | 1.92 | 44.25 | 4.97 | |
T-PSA-NC-2 | 0.1 | 3.46 | 3.86 | 3.22 | 2.16 | 1.78 | 43.19 | 4.98 |
0.5 | 3.42 | 3.85 | 3.15 | 2.18 | 1.79 | 43.46 | 5.01 | |
1 | 3.37 | 3.81 | 3.05 | 2.22 | 1.81 | 43.74 | 5.07 | |
1.5 | 3.33 | 3.78 | 2.99 | 2.24 | 1.82 | 43.98 | 5.1 | |
2 | 3.29 | 3.76 | 2.89 | 2.27 | 1.84 | 44.20 | 5.18 | |
T-PSA-NC-3 | 0.1 | 3.43 | 3.84 | 3.13 | 2.21 | 1.79 | 43.04 | 5.03 |
0.5 | 3.38 | 3.82 | 3.02 | 2.24 | 1.81 | 43.29 | 5.09 | |
1 | 3.33 | 3.79 | 2.96 | 2.26 | 1.83 | 43.58 | 5.11 | |
1.5 | 3.29 | 3.76 | 2.87 | 2.29 | 1.85 | 43.85 | 5.17 | |
2 | 3.23 | 3.73 | 2.83 | 2.32 | 1.87 | 44.16 | 5.15 | |
T-PSA-NC-4 | 0.1 | 3.43 | 3.84 | 3.36 | 2.15 | 1.79 | 43.10 | 4.80 |
0.5 | 3.37 | 3.81 | 3.24 | 2.19 | 1.82 | 43.38 | 4.86 | |
1 | 3.32 | 3.78 | 3.09 | 2.22 | 1.84 | 43.77 | 4.95 | |
1.5 | 3.27 | 3.75 | 3.01 | 2.25 | 1.85 | 44.02 | 4.99 | |
2 | 3.22 | 3.73 | 2.94 | 2.28 | 1.87 | 44.29 | 5.03 | |
T-PSA-NC-5 | 0.1 | 3.39 | 3.82 | 3.40 | 2.16 | 1.82 | 43.05 | 4.71 |
0.5 | 3.34 | 3.79 | 3.33 | 2.18 | 1.83 | 43.34 | 4.73 | |
1 | 3.29 | 3.77 | 3.25 | 2.21 | 1.85 | 43.66 | 4.75 | |
1.5 | 3.25 | 3.74 | 3.19 | 2.23 | 1.87 | 43.92 | 4.77 | |
2 | 3.21 | 3.72 | 3.11 | 2.25 | 1.89 | 44.17 | 4.81 |
Sample | Diameter Peak 1 (nm) | Diameter Peak 2 (nm) |
---|---|---|
T-PSA NC1 | 1158.4 | 156.03 |
T-PSA NC2 | 530 | PNS * |
T-PSA NC3 | 399 | PNS * PNS * |
T-PSA NC4 | 510.3 | PNS * |
T-PSA NC5 | 554.2 | PNS * |
PSA | 241.3 | - |
TiO2 | 288.7 | - |
Zeta Potential (+ or −mV) | Stability |
---|---|
0 | Little or no stability |
15 | Some stability, but settling lightly |
30 | Moderate stability |
45 | Good stability; possible settling |
60 | Very good stability; little settling likely |
Sample | Zeta Potential Value (mV) | Stability |
---|---|---|
T-PSA NC1 | 33.0 | Moderate stability |
T-PSA NC2 | 28.0 | Moderate stability |
T-PSA NC3 | 38.1 | Moderate stability |
T-PSA NC4 | 24.0 | Moderate stability |
T-PSA NC5 | −1.4 | Some stability, but settling lightly |
PSA | 8.1 | Some stability, but settling lightly |
TiO2 | −12.7 | Some stability, but settling lightly |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arumugam, C.; Velu, N.; Radhakrishnan, P.; Roy, V.A.L.; Anantha-Iyengar, G.; Lee, D.-E.; Kannan, V. Studies on the Functional Properties of Titanium Dioxide Nanoparticles Distributed in Silyl–Alkyl Bridged Polyaniline-Based Nanofluids. Nanomaterials 2023, 13, 2332. https://doi.org/10.3390/nano13162332
Arumugam C, Velu N, Radhakrishnan P, Roy VAL, Anantha-Iyengar G, Lee D-E, Kannan V. Studies on the Functional Properties of Titanium Dioxide Nanoparticles Distributed in Silyl–Alkyl Bridged Polyaniline-Based Nanofluids. Nanomaterials. 2023; 13(16):2332. https://doi.org/10.3390/nano13162332
Chicago/Turabian StyleArumugam, Chandravadhana, Nandakumar Velu, Padmanaban Radhakrishnan, Vellaisamy A. L. Roy, Gopalan Anantha-Iyengar, Dong-Eun Lee, and Venkatramanan Kannan. 2023. "Studies on the Functional Properties of Titanium Dioxide Nanoparticles Distributed in Silyl–Alkyl Bridged Polyaniline-Based Nanofluids" Nanomaterials 13, no. 16: 2332. https://doi.org/10.3390/nano13162332