Two-Dimensional Hetero- to Homochiral Phase Transition from Dynamic Adsorption of Barbituric Acid Derivatives
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barlow, S.M.; Raval, R. Complex organic molecules at metal surfaces: Bonding, organisation and chirality. Surf. Sci. Rep. 2003, 50, 201–341. [Google Scholar] [CrossRef]
- Suarez, M.; Branda, N.; Lehn, J.M. Supramolecular chirality: Chiral hydrogen-bonded supermolecules from achiral molecular Components. Helv. Chem. Acta 1998, 8, 1–13. [Google Scholar] [CrossRef]
- Elemans, J.A.A.W.; De Cat, I.; Xu, H.; De Feyter, S. Two-dimensional chirality at liquid–solid interfaces. Chem. Soc. Rev. 2009, 38, 722–736. [Google Scholar] [CrossRef] [PubMed]
- Ernst, K.H. Molecular chirality at surfaces. Phys. Status Solidi B 2012, 249, 2057–2088. [Google Scholar] [CrossRef]
- Chen, T.; Wang, D.; Wan, L.J. Two-dimensional chiral molecular assembly on solid surfaces: Formation and regulation. Natl. Sci. Rev. 2015, 2, 205–216. [Google Scholar] [CrossRef]
- Xu, H.; Wolffs, M.; Tomovic, Z.; Meijer, E.W.; Schenning, A.P.H.J.; De Feyter, S. A multivalent hexapod having stereogenic centers: Chirality and conformational dynamics in homochiral and heterochiral systems. Cryst. Eng. Comm. 2011, 13, 5584–5590. [Google Scholar] [CrossRef]
- Haq, S.; Liu, N.; Humblot, V.; Jansen, A.P.J.; Raval, R. Drastic symmetry breaking in supramolecular organization of enantiomerically unbalanced monolayers at surfaces. Nat. Chem. 2009, 1, 409–414. [Google Scholar] [CrossRef]
- Gutzler, R.; Ivasenko, O.; Fu, C.; Brusso, J.L.; Rosei, F.; Perepichka, D.F. Halogen bonds as stabilizing interactions in a chiral self-assembled molecular monolayer. Chem. Commun. 2011, 47, 9453–9455. [Google Scholar] [CrossRef]
- Weckesser, J.; De Vita, A.; Barth, J.V.; Cai, C.; Kern, K. Mesoscopic correlation of supramolecular chirality in one-dimensional hydrogen-bonded assemblies. Phys. Rev. Lett. 2001, 87, 096101. [Google Scholar] [CrossRef]
- Sleczkowski, P.; Katsonis, N.; Kapitanchuk, O.; Marchenko, A.; Mathevet, F.; Croset, B.; Lacaze, E. Emergence of chirality in hexagonally packed monolayers of hexapentyloxytriphenylene on Au(111): A joint experimental and theoretical study. Langmuir 2014, 30, 13275–13282. [Google Scholar] [CrossRef]
- Silly, F.; Ausset, S.; Sun, X. Coexisting chiral two-dimensional self-assembled structures of 1,2,3,4-tetrahydronaphthalene molecules: Porous pinwheel nanoarchitecture and close-packed herringbone arrangement. J. Phys. Chem. C 2017, 121, 15288–15293. [Google Scholar] [CrossRef]
- Sun, X.; Mura, M.; Jonkman, H.T.; Kantorovich, L.N.; Silly, F. Fabrication of a complex two-dimensional adenine–perylene-3, 4, 9, 10-tetracarboxylic dianhydride chiral nanoarchitecture through molecular self-assembly. J. Phys. Chem. C 2012, 116, 2493–2499. [Google Scholar] [CrossRef]
- Rajwar, D.; Sun, X.; Cho, S.J.; Grimsdale, A.C.; Fichou, D. Synthesis and 2D self-assembly at the liquid-solid interface of end-substituted star-shaped oligophenylenes. Cryst. Eng. Comm. 2012, 14, 5182–5187. [Google Scholar] [CrossRef]
- Sun, X.; Silly, F.; Maurel, F.; Dong, C. Supramolecular chiral host–guest nanoarchitecture induced by the selective assembly of barbituric acid derivative enantiomers. Nanotechnology 2016, 27, 42LT01. [Google Scholar] [CrossRef] [PubMed]
- Karan, S.; Wang, Y.; Robles, R.; Lorente, N.; Berndt, R. Surface-supported supramolecular pentamers. J. Am. Chem. Soc. 2013, 135, 14004–14007. [Google Scholar] [CrossRef] [PubMed]
- Fasel, R.; Parschau1, M.; Ernst, K.H. Amplification of chirality in two-dimensional enantiomorphous lattices. Nature 2006, 439, 449–452. [Google Scholar] [CrossRef]
- Karageorgakia, C.; Ernst, K.H. A metal surface with chiral memory. Chem. Commun. 2014, 50, 1814–1816. [Google Scholar] [CrossRef]
- Barth, J.V. Molecular Architectonic on Metal Surfaces. Annu. Rev. Phys. Chem. 2007, 58, 375–407. [Google Scholar] [CrossRef]
- Raval, R. Chiral expression from molecular assemblies at metal surfaces: Insights from surface science techniques. Chem. Soc. Rev. 2009, 38, 707–721. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, H.; Shen, C.; Gan, F.; Su, X.; Qiu, H.; Yang, B.; Yu, P. Chiral recognition of hexahelicene on a surface via the forming of asymmetric heterochiral trimers. Int. J. Mol. Sci. 2019, 20, 2018. [Google Scholar] [CrossRef]
- Guo, Z.; De Cat, I.; Van Averbeke, B.; Lin, J.; Wang, G.; Xu, H.; Lazzaroni, R.; Beljonne, D.; Meijer, E.W.; Schenning, A.P.H.J.; et al. Nucleoside-assisted self-assembly of oligo(p-phenylenevinylene)s at liquid/solid interface: Chirality and nanostructures. J. Am. Chem. Soc. 2011, 133, 17764–17771. [Google Scholar] [CrossRef] [PubMed]
- Tahara, K.; Yamaga, H.; Ghijsens, E.; Inukai, K.; Adisoejoso, J.; Blunt, M.O.; De Feyter, S.; Tobe, Y. Control and induction of surface-confined homochiral porous molecular networks. Nat. Chem. 2011, 3, 714. [Google Scholar] [CrossRef]
- Chen, T.; Yang, W.H.; Wang, D.; Wan, L.J. Globally homochiral assembly of two-dimensional molecular networks triggered by co-absorbers. Nat. Chem. 2013, 4, 1389. [Google Scholar] [CrossRef]
- Sun, X.; Yao, X.; Lafolet, F.; Lemercier, G.; Lacroix, J.C. One-Dimensional Double Wires and Two-Dimensional Mobile Grids: Cobalt/Bipyridine Coordination Networks at the Solid/Liquid Interface. J. Phys. Chem. Lett. 2019, 10, 4164–4169. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Yu, L.; Zou, Y.; Yang, Y.; Wang, C. Steric dependence of chirality effect in surface-mediated peptide assemblies identified with scanning tunneling microscopy. Nano Lett. 2019, 19, 5403–5409. [Google Scholar] [CrossRef] [PubMed]
- Rivera, J.; Craig, S.L.; Martin, T.; Rebek, J., Jr. Chiral guests and their ghosts in reversibly assembled hosts. Angew. Chem. Int. Ed. 2000, 39, 2130–2132. [Google Scholar] [CrossRef]
- Sun, X.; Frath, D.; Lafolet, F.; Lacroix, J.C. Supramolecular Networks and Wires Dominated by Intermolecular BiEDOT Interactions. J. Phys. Chem. C 2018, 122, 22760–22766. [Google Scholar] [CrossRef]
- Yang, B.; Cao, N.; Ju, H.; Lin, H.; Li, Y.; Ding, H.; Ding, J.; Zhang, J.; Peng, C.; Zhang, H.; et al. Intermediate States Directed Chiral Transfer on a Silver Surface. J. Am. Chem. Soc. 2019, 141, 168–174. [Google Scholar] [CrossRef]
- Vidal, F.; Delvigne, E.; Stepanow, S.; Lin, N.; Barth, J.V.; Kern, K. Chiral phase transition in two-dimensional supramolecular assemblies of prochiral molecules. J. Am. Chem. Soc. 2005, 127, 10101–10106. [Google Scholar] [CrossRef]
- Mugarza, A.; Lorente, N.; Ordejon, P.; Krull, C.; Stepanow, S.; Bocquet, M.L.; Fraxedas, J.; Ceballos, G.; Gambardella, P. Orbital specific chirality and homochiral self-assembly of achiral molecules induced by charge transfer and spontaneous symmetry breaking. Phys. Rev. Lett. 2010, 105, 115702. [Google Scholar] [CrossRef]
- Yang, B.; Wang, Y.; Cun, H.; Du, S.; Xu, M.; Wang, Y.; Ernst, K.H.; Gao, H.J. Direct observation of enantiospecific substitution in a two-dimensional chiral phase transition. J. Am. Chem. Soc. 2010, 132, 10440–10444. [Google Scholar] [CrossRef] [PubMed]
- Xiang, F.; Schneider, M.A. Coverage-induced chiral transition of Co(II)-5,15-diphenylporphyrin self-assemblies on Cu(111). J. Phys. Chem. C 2022, 126, 6745–6752. [Google Scholar] [CrossRef]
- Han, D.; Wang, T.; Huang, J.; Li, X.; Zeng, Z.; Zhu, J. Chiral nanoporous networks featuring various chiral vertices from an achiral molecule on Ag(100). Nano Res. 2022, 15, 3753–3762. [Google Scholar] [CrossRef]
- Zhang, H.; Gong, Z.; Sun, K.; Duan, R.; Ji, P.; Li, L.; Li, C.; Müllen, K.; Chi, L. Chirality transfer via on-surface reaction. J. Am. Chem. Soc. 2016, 138, 11743–11748. [Google Scholar] [CrossRef]
- Stolz, S.; Gröning, O.; Prinz, J.; Brune, H.; Widmer, R. Molecular motor crossing the frontier of classical to quantum tunneling motion. Proc. Natl. Acad. Sci. USA 2020, 117, 14838–14842. [Google Scholar] [CrossRef]
- Schied, M.; Prezzi, D.; Liu, D.; Kowarik, S.; Jacobson, P.A.; Corni, S.; Tour, J.M.; Grill, L. Chirality-specific unidirectional rotation of molecular motors on Cu(111). ACS Nano 2023, 17, 3958–3965. [Google Scholar] [CrossRef]
- De Cat, I.; Guo, Z.; George, S.J.; Meijer, E.W.; Schenning, A.P.H.J.; De Feyter, S. Induction of chirality in an achiral monolayer at the liquid/solid interface by a supramolecular chiral auxiliary. J. Am. Chem. Soc. 2012, 134, 3171–3177. [Google Scholar] [CrossRef]
- Cucinotta, A.; Kahlfuss, C.; Minoia, A.; Eyley, S.; Zwaenepoel, K.; Velpula, G.; Thielemans, W.; Lazzaroni, R.; Bulach, V.; Hosseini, M.W.; et al. Metal ion and guest-mediated spontaneous resolution and solvent-induced chiral Symmetry breaking in guanine-based metallosupramolecular networks. J. Am. Chem. Soc. 2023, 145, 1194–1205. [Google Scholar] [CrossRef] [PubMed]
- Yamagata, K.; Maeda, M.; Tessari, Z.; Mali, K.S.; Tobe, Y.; De Feyter, S.; Tahara, K. Solvent mediated nanoscale quasi-periodic chirality reversal in self-assembled molecular networks featuring mirror twin boundaries. Small 2023, 19, 2207209. [Google Scholar] [CrossRef]
- Prins, L.J.; De Jong, F.; Timmerman, P.; Reinhoudt, D.N. An enantiomerically pure hydrogen-bonded assembly. Nature 2000, 408, 181–184. [Google Scholar] [CrossRef] [PubMed]
- Iski, E.V.; Tierney, H.L.; Jewell, A.D.; Sykes, E.C.H. Spontaneous transmission of chirality through multiple length scales. Chem. Eur. J. 2011, 17, 7205–7212. [Google Scholar] [CrossRef]
- Suarez, M.; De Armas, M.; Ramirez, O.; Alvarez, A.; Martınez-Alvarez, R.; Molero, D.; Seoane, C.; Liz, R.; De Armas, H.N.; Blaton, N.M.; et al. Synthesis and structural study of new highly lipophilic 1,4-dihydropyridines. New J. Chem. 2005, 29, 1567–1576. [Google Scholar] [CrossRef]
- Silly, F. A robust method for processing scanning probe microscopy images and determining nanoobject position and dimensions. J. Microsc. 2009, 236, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Moss, G.P. Basic Terminology of Stereochemistry. Pure Appl. Chem. 1996, 68, 2193–2222. [Google Scholar] [CrossRef]
- Dong, M.; Miao, K.; Hu, Y.; Wu, J.; Li, J.; Pang, P.; Miao, X.; Deng, W. Cooperating dipole–dipole and van der Waals interactions driven 2D self-assembly of fluorenone derivatives: Ester chain length effect. Phys. Chem. Chem. Phys. 2017, 19, 31113–31120. [Google Scholar] [CrossRef] [PubMed]
- Colle, R.; Grosso, G.; Ronzani, A.; Zicovich-Wilson, C.M. Structure and X-ray spectrum of crystalline poly(3-hexylthiophene) from DFT-van der Waals calculations. Phys. Status Solidi B 2011, 248, 1360–1368. [Google Scholar] [CrossRef]
- Ciesielski, A.; Haar, S.; Bényei, A.; Paragi, G.; Guerra, C.F.; Bickelhaupt, F.M.; Masiero, S.; Szolomájer, J.; Samorì, P.; Spada, G.P.; et al. Self-Assembly of N3-Substituted Xanthines in the Solid State and at the Solid–Liquid Interface. Langmuir 2013, 29, 7283–7290. [Google Scholar] [CrossRef]
- Pierro, A.D.; Saracco, G.; Fina, A. Molecular junctions for thermal transport between graphene nanoribbons: Covalent bonding vs. interdigitated chains. Comput. Mater. Sci. 2018, 142, 255–260. [Google Scholar] [CrossRef]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silly, F.; Dong, C.; Maurel, F.; Sun, X. Two-Dimensional Hetero- to Homochiral Phase Transition from Dynamic Adsorption of Barbituric Acid Derivatives. Nanomaterials 2023, 13, 2304. https://doi.org/10.3390/nano13162304
Silly F, Dong C, Maurel F, Sun X. Two-Dimensional Hetero- to Homochiral Phase Transition from Dynamic Adsorption of Barbituric Acid Derivatives. Nanomaterials. 2023; 13(16):2304. https://doi.org/10.3390/nano13162304
Chicago/Turabian StyleSilly, Fabien, Changzhi Dong, François Maurel, and Xiaonan Sun. 2023. "Two-Dimensional Hetero- to Homochiral Phase Transition from Dynamic Adsorption of Barbituric Acid Derivatives" Nanomaterials 13, no. 16: 2304. https://doi.org/10.3390/nano13162304
APA StyleSilly, F., Dong, C., Maurel, F., & Sun, X. (2023). Two-Dimensional Hetero- to Homochiral Phase Transition from Dynamic Adsorption of Barbituric Acid Derivatives. Nanomaterials, 13(16), 2304. https://doi.org/10.3390/nano13162304

