Investigation of Structural, Morphological, and Optical Properties of Novel Electrospun Mg-Doped TiO2 Nanofibers as an Electron Transport Material for Perovskite Solar Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental
3. Results and Discussion
3.1. SEM Characterization
3.2. XRD and XPS Analysis
3.3. Optical Band Gap and UPS Characterizations
3.4. Photoluminescence (PL) Spectra
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Halder, B.; Banik, P.; Almohamad, H.; Al Dughairi, A.A.; Al-Mutiry, M.; Al Shahrani, H.F.; Abdo, H.G. Land Suitability Investigation for Solar Power Plant Using GIS, AHP and Multi-Criteria Decision Approach: A Case of Megacity Kolkata, West Bengal, India. Sustainability 2022, 14, 11276. [Google Scholar] [CrossRef]
- Rong, Y.; Hu, Y.; Mei, A.; Tan, H.; Saidaminov, M.I.; Seok, S.I.; McGehee, M.D.; Sargent, E.H.; Han, H. Challenges for commercializing perovskite solar cells. Science 2018, 361, eaat8235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pang, S.; Zhou, Y.; Wang, Z.; Yang, M.; Krause, A.R.; Zhou, Z.; Zhu, K.; Padture, N.P.; Cui, G. Transformative Evolution of Organolead Triiodide Perovskite Thin Films from Strong Room-Temperature Solid-Gas Interaction between HPbI3-CH3NH2 Precursor Pair. J. Am. Chem. Soc. 2016, 138, 750–753. [Google Scholar] [CrossRef]
- Tong, X.; Lin, F.; Wu, J.; Wang, Z.M. High performance perovskite solar cells. Adv. Sci. 2015, 3, 7867–7918. [Google Scholar] [CrossRef] [PubMed]
- Arshad, Z.; Shakir, S.; Khoja, A.H.; Javed, A.H.; Anwar, M.; Rehman, A.; Javaid, R.; Qazi, U.Y.; Farrukh, S. Performance Analysis of Calcium-Doped Titania (TiO2) as an Effective Electron Transport Layer (ETL) for Perovskite Solar Cells. Energies 2022, 15, 1408. [Google Scholar] [CrossRef]
- Mohamad Noh, M.F.; Teh, C.H.; Daik, R.; Lim, E.L.; Yap, C.C.; Ibrahim, M.A.; Ahmad Ludin, N.; Bin Mohd Yusoff, A.R.; Jang, J.; Mat Teridi, M.A. The architecture of the electron transport layer for a perovskite solar cell. J. Mater. Chem. C 2018, 6, 682–712. [Google Scholar] [CrossRef]
- Zuo, C.; Ding, L. Solution-Processed Cu2O and CuO as Hole Transport Materials for Efficient Perovskite Solar Cells. Small 2015, 11, 5528–5532. [Google Scholar] [CrossRef]
- Heo, J.H.; Lee, M.H.; Han, H.J.; Patil, B.R.; Yu, J.S.; Im, S.H. Highly efficient low temperature solution processable planar type CH3NH3PbI3 perovskite flexible solar cells. J. Mater. Chem. A 2016, 4, 1572–1578. [Google Scholar] [CrossRef]
- Song, J.; Bian, J.; Zheng, E.; Wang, X.F.; Tian, W.; Miyasaka, T. Efficient and environmentally stable perovskite solar cells based on ZnO electron collection layer. Chem. Lett. 2015, 44, 610–612. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Granados, A.; Corpus-Mendoza, A.N.; Moreno-Romero, P.M.; Rodríguez-Castañeda, C.A.; Pascoe-Sussoni, J.E.; Castelo-González, O.A.; Menchaca-Campos, E.C.; Escorcia-García, J.; Hu, H. Optically uniform thin films of mesoporous TiO2 for perovskite solar cell applications. Opt. Mater. 2019, 88, 695–703. [Google Scholar] [CrossRef]
- Quy, H.V.; Truyen, D.H.; Kim, S.; Bark, C.W. Facile Synthesis of spherical TiO2 hollow nanospheres with a diameter of 150 nm for high-performance mesoporous perovskite solar cells. Materials 2021, 14, 629. [Google Scholar] [CrossRef]
- Yun, J.H.; Wang, L.; Amal, R.; Ng, Y.H. One-dimensional TiO2 nanostructured photoanodes: From dye-sensitised solar cells to perovskite solar cells. Energies 2016, 9, 1030. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.T.; Park, D.C.; Yang, W.H.; Cho, C.H.; Choi, W.Y. Effects of electrospinning parameters on the microstructure of pvp/tio2 nanofibers. Nanomaterials 2021, 11, 1616. [Google Scholar] [CrossRef] [PubMed]
- Dharani, S.; Mulmudi, H.K.; Yantara, N.; Thu Trang, P.T.; Park, N.G.; Graetzel, M.; Mhaisalkar, S.; Mathews, N.; Boix, P.P. High efficiency electrospun TiO2 nanofiber based hybrid organic-inorganic perovskite solar cell. Nanoscale 2014, 6, 1675–1679. [Google Scholar] [CrossRef]
- Peter Amalathas, A.; Landová, L.; Conrad, B.; Holovský, J. Concentration-Dependent Impact of Alkali Li Metal Doped Mesoporous TiO2 Electron Transport Layer on the Performance of CH3NH3PbI3 Perovskite Solar Cells. J. Phys. Chem. C 2019, 123, 19376–19384. [Google Scholar] [CrossRef]
- Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.B.; Duan, H.S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Interface engineering of highlyefficient perovskite solar cellsaccumbens. Science 2014, 345, 535–542. [Google Scholar]
- Song, J.; Zheng, E.; Liu, L.; Wang, X.F.; Chen, G.; Tian, W.; Miyasaka, T. Magnesium-doped Zinc Oxide as Electron Selective Contact Layers for Efficient Perovskite Solar Cells. ChemSusChem 2016, 9, 2640–2647. [Google Scholar] [CrossRef]
- Giordano, F.; Abate, A.; Correa Baena, J.P.; Saliba, M.; Matsui, T.; Im, S.H.; Zakeeruddin, S.M.; Nazeeruddin, M.K.; Hagfeldt, A.; Graetzel, M. Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells. Nat. Commun. 2016, 7, 10379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roose, B.; Gödel, K.C.; Pathak, S.; Sadhanala, A.; Baena, J.P.C.; Wilts, B.D.; Snaith, H.J.; Wiesner, U.; Grätzel, M.; Steiner, U.; et al. Enhanced efficiency and stability of perovskite solar cells through Nd-doping of mesostructured TiO2. Adv. Energy Mater. 2016, 6, 1501868. [Google Scholar] [CrossRef]
- Zhang, H.; Shi, J.; Xu, X.; Zhu, L.; Luo, Y.; Li, D.; Meng, Q. Mg-doped TiO2 boosts the efficiency of planar perovskite solar cells to exceed 19%. J. Mater. Chem. A 2016, 4, 15383–15389. [Google Scholar] [CrossRef]
- Arshad, Z.; Khoja, A.H.; Shakir, S.; Afzal, A.; Mujtaba, M.A.; Soudagar, M.E.M.; Fayaz, H.; Saleel C, A.; Farukh, S.; Saeed, M. Magnesium doped TiO2as an efficient electron transport layer in perovskite solar cells. Case Stud. Therm. Eng. 2021, 26, 101101. [Google Scholar] [CrossRef]
- Rafieh, A.I.; Ekanayake, P.; Wakamiya, A.; Nakajima, H.; Lim, C.M. Enhanced performance of CH3NH3PbI3-based perovskite solar cells by tuning the electrical and structural properties of mesoporous TiO2 layer via Al and Mg doping. Sol. Energy 2019, 177, 374–381. [Google Scholar] [CrossRef]
- Yang, W.S.; Noh, J.H.; Jeon, N.J.; Kim, Y.C.; Ryu, S.; Seo, J.; Seok, S. Il High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348, 1234–1237. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.; Zhang, Y.; Liu, F.; Kitabatake, Y.; Hayase, S.; Toyoda, T.; Yoshino, K.; Minemoto, T.; Katayama, K.; Shen, Q. Effect of the conduction band offset on interfacial recombination behavior of the planar perovskite solar cells. Nano Energy 2018, 53, 17–26. [Google Scholar] [CrossRef]
- Cheng, Y.; Huang, W.; Zhang, Y.; Zhu, L.; Liu, Y.; Fan, X.; Cao, X. Preparation of TiO2 hollow nanofibers by electrospining combined with sol-gel process. CrystEngComm 2010, 12, 2256–2260. [Google Scholar] [CrossRef]
- Fujihara, K.; Kumar, A.; Jose, R.; Ramakrishna, S.; Uchida, S. Spray deposition of electrospun TiO2 nanorods for dye-sensitized solar cell. Nanotechnology 2007, 18, 365709. [Google Scholar] [CrossRef]
- Jinchu, I.; Krishnan, B.; Sreekala, C.O.; Balakrishnan, N.; Sajeev, U.S.; Sreelatha, K.S. Escalating the performance of perovskite solar cell via electrospun TiO2 nanofibers. Int. Conf. Electr. Electron. Optim. Tech. ICEEOT 2016, 2016, 4158–4160. [Google Scholar] [CrossRef]
- Çalışır, M.D. Fabrication of nanostructured metal oxide materials and their use in energy and environmental applications (No:513142001 Doctoral dissertation), Istanbul Technical University, Repository. 2020. Available online: https://polen.itu.edu.tr/bitstreams/804af29d-2142-4955-ac1f-47e57dfddcdb/download (accessed on 30 July 2023).
- Arbiol, J.; Cerdà, J.; Dezanneau, G.; Cirera, A.; Peiró, F.; Cornet, A.; Morante, J.R. Effects of Nb doping on the TiO2 anatase-to-rutile phase transition. J. Appl. Phys. 2002, 92, 853–861. [Google Scholar] [CrossRef]
- Geng, W.; Tong, C.J.; Liu, J.; Zhu, W.; Lau, W.M.; Liu, L.M. Structures and Electronic Properties of Different CH3NH3PbI3/TiO2 Interface: A First-Principles Study. Sci. Rep. 2016, 6, 20131. [Google Scholar] [CrossRef] [Green Version]
- Abrinaei, F. Nonlinear optical response of Mg/MgO structures prepared by laser ablation method. J. Eur. Opt. Soc. 2017, 13, 15. [Google Scholar] [CrossRef] [Green Version]
- Shivaraju, H.P.; Midhun, G.; Anil Kumar, K.M.; Pallavi, S.; Pallavi, N.; Behzad, S. Degradation of selected industrial dyes using Mg-doped TiO2 polyscales under natural sun light as an alternative driving energy. Appl. Water Sci. 2017, 7, 3937–3948. [Google Scholar] [CrossRef] [Green Version]
- Shakir, S.; Abd-ur-Rehman, H.M.; Yunus, K.; Iwamoto, M.; Periasamy, V. Fabrication of un-doped and magnesium doped TiO2 films by aerosol assisted chemical vapor deposition for dye sensitized solar cells. J. Alloys Compd. 2018, 737, 740–747. [Google Scholar] [CrossRef]
- Manju, J.; Jawhar, S.M.J. Synthesis of magnesium-doped TiO2 photoelectrodes for dye-sensitized solar cell applications by solvothermal microwave irradiation method. J. Mater. Res. 2018, 33, 1534–1542. [Google Scholar] [CrossRef]
- Jabeen, N.; Zaidi, A.; Hussain, A.; Hassan, N.U.; Ali, J.; Ahmed, F.; Khan, M.U.; Iqbal, N.; Elnasr, T.A.S.; Helal, M.H. Single- and Multilayered Perovskite Thin Films for Photovoltaic Applications. Nanomaterials 2022, 12, 3208. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, S.; Mo, L.E.; Huang, Y.; Tian, H.; Hu, L.; Huo, Z.; Dai, S.; Kong, F.; Pan, X. Charge recombination and band-edge shift in the dye-sensitized Mg2+-doped TiO2 solar cells. J. Phys. Chem. C 2011, 115, 16418–16424. [Google Scholar] [CrossRef]
- Sabbah, H. Numerical Simulation of 30% Efficient Lead-Free Perovskite CsSnGeI3-Based Solar Cells. Materials 2022, 15, 3229. [Google Scholar] [CrossRef] [PubMed]
Sample Name | MgCl2 (%) | T (°C) | D (nm) | Shrinkage (%) |
---|---|---|---|---|
A | 0.1 | - | 249 | - |
B | 0.1 | 500 | 80 | %68 |
C | 0.5 | - | 262 | - |
D | 0.5 | 500 | 133 | %50 |
(a) | ||||
Annealing Time (h) | Samples | 2θ | FWHM | Crystal Size (nm) |
3 | TiO2 | 25.25 | 0.88 | 9.22 |
2 | TiO2 | 25.30 | 0.76 | 10.69 |
2 | TiO2 + 0.1% MgCl2 | 25.25 | 1.23 | 6.61 |
2 | TiO2 + 0.1% MgCl2 | 25.29 | 0.74 | 10.86 |
(b) | ||||
Annealing Time & Phase | 2θ | Crystal Size | Average Crystal Size | |
3 h & Rutile | 27.37 | 10.67 | 14.11 | |
36.07 | 13.54 | |||
41.24 | 23.10 | |||
54.31 | 9.34 | |||
56.59 | 22.09 | |||
69.18 | 5.91 | |||
2 h & Rutile | 27.42 | 15.55 | 17.80 | |
36.07 | 17.99 | |||
41.25 | 22.17 | |||
54.34 | 15.80 | |||
56.65 | 26.28 | |||
69.19 | 9.03 | |||
3 h & Anatase | 25.25 | 9.22 | 12.23 | |
37.77 | 19.51 | |||
48.03 | 17.39 | |||
55.05 | 2.83 | |||
2 h & Anatase | 25.30 | 10.69 | 14.48 | |
36.07 | 16.60 | |||
48.08 | 15.81 | |||
62.77 | 14.84 | |||
2 h & Rutile_0.1%Mg-Doped | 27.24 | 6.65 | 6.82 | |
54.43 | 3.93 | |||
56.91 | 12.45 | |||
69.82 | 4.26 | |||
2 h & Anatase_0.1%Mg-Doped | 25.25 | 6.61 | 4.06 | |
37.82 | 3.51 | |||
47.99 | 4.37 | |||
62.46 | 1.76 | |||
2 h & Rutile_0.5%Mg-Doped | 26.09 | 3.38 | 6.25 | |
35.94 | 10.10 | |||
2 h & Anatase_0.5%Mg-Doped | 25.29 | 10.86 | 4.00 | |
37.54 | 0.68 | |||
49.66 | 0.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erdogar, K.; Yucel, O.; Oruc, M.E. Investigation of Structural, Morphological, and Optical Properties of Novel Electrospun Mg-Doped TiO2 Nanofibers as an Electron Transport Material for Perovskite Solar Cells. Nanomaterials 2023, 13, 2255. https://doi.org/10.3390/nano13152255
Erdogar K, Yucel O, Oruc ME. Investigation of Structural, Morphological, and Optical Properties of Novel Electrospun Mg-Doped TiO2 Nanofibers as an Electron Transport Material for Perovskite Solar Cells. Nanomaterials. 2023; 13(15):2255. https://doi.org/10.3390/nano13152255
Chicago/Turabian StyleErdogar, Kubra, Ozgun Yucel, and Muhammed Enes Oruc. 2023. "Investigation of Structural, Morphological, and Optical Properties of Novel Electrospun Mg-Doped TiO2 Nanofibers as an Electron Transport Material for Perovskite Solar Cells" Nanomaterials 13, no. 15: 2255. https://doi.org/10.3390/nano13152255
APA StyleErdogar, K., Yucel, O., & Oruc, M. E. (2023). Investigation of Structural, Morphological, and Optical Properties of Novel Electrospun Mg-Doped TiO2 Nanofibers as an Electron Transport Material for Perovskite Solar Cells. Nanomaterials, 13(15), 2255. https://doi.org/10.3390/nano13152255