Developing High-Power-Density Electromagnetic Devices with Nanocrystalline and Amorphous Magnetic Materials
Abstract
:1. Introduction
2. Developing High-Frequency High-Power-Density Transformers with Nanocrystalline Magnetic Materials
2.1. Research Status and Routes
2.2. Brief Comments
3. Developing High-Frequency High-Power-Density Transformers with Amorphous Magnetic Materials
3.1. Research Status and Routes
3.2. Brief Comments
4. Developing Electrical Machines with Nanocrystalline and Amorphous Magnetic Materials
4.1. Research Status and Routes
4.2. Magnetic Properties and Their Measurements
4.3. Brief Comments
5. Conclusions and Discussions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lu, J.; Stegen, S.; Butler, D. High Frequency and High Power Density Transformers for DC/DC Converter used in Solar PV System. In Proceedings of the 2nd International Symposium on Power Electronics for Distributed Generation Systems, Hefei, China, 16–18 June 2010; pp. 481–484. [Google Scholar]
- Ambatipudi, R.; Kotte, H.B.; Bertilsson, K. High Performance Planar Power Transformer with High Power Density in MHz Frequency Region for Next Generation Switch Mode Power Supplies. In Proceedings of the 28th Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 17–21 March 2013; pp. 2139–2143. [Google Scholar]
- Islam, M.R.; Guo, Y.; Zhu, J.; Lu, H.; Jin, J.X. High-Frequency Magnetic-Link Medium-Voltage Converter for Superconducting Generator-Based High-Power Density Wind Generation Systems. IEEE Trans. Appl. Supercond. 2014, 24, 5202605. [Google Scholar] [CrossRef] [Green Version]
- Bahmani, M.A.; Thiringer, T.; Rabiei, A.; Abdulahovic, T. Comparative Study of a Multi-MW High-Power Density DC Transformer With an Optimized High-Frequency Magnetics in All-DC Offshore Wind Farm. IEEE Trans. Power Deliv. 2016, 31, 857–866. [Google Scholar] [CrossRef]
- Lu, R.; Yu, J.; Feng, D.; Bu, K.; Yang, Z.; Li, C.; Li, W. Modeling and Design of a Medium Frequency Transformer with High Isolation and High Power Density. In Proceedings of the 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), Phoenix, AZ, USA, 14–17 June 2021; pp. 1694–1700. [Google Scholar]
- Chan, C.C.; Jiang, J.Z.; Chen, G.H.; Wang, X.Y. A Novel High Power Density Permanent Magnet Variable-Speed Motor. IEEE Trans. Energy Convers. 1993, 8, 297–303. [Google Scholar] [CrossRef]
- Bangura, J.F. Design of High-Power Density and Relatively High-Efficiency Flux-Switching Motor. IEEE Trans. Energy Convers. 2006, 21, 416–425. [Google Scholar] [CrossRef]
- EL-Refaie, A.M.; Alexander, J.P.; Galioto, S.; Reddy, P.B.; Huh, K.-K.; Bock, P.; Shen, X. Advanced High-Power-Density Interior Permanent Magnet Motor for Traction Applications. IEEE Trans. Ind. Appl. 2014, 50, 3235–3248. [Google Scholar] [CrossRef]
- Chen, H.; Demerdash, N.A.O.; EL-Refaie, A.M.; Guo, Y.; Hua, W.; Lee, C.H.T. Investigation of a 3D-Magnetic Flux PMSM with High Torque Density for Electric Vehicles. IEEE Trans. Energy Convers. 2022, 37, 1442–1454. [Google Scholar] [CrossRef]
- Wu, S.; Zhou, J.; Zhang, X.; Yu, J. Design and Research on High Power Density Motor of Integrated Motor Drive System for Electric Vehicles. Energies 2022, 15, 3542. [Google Scholar] [CrossRef]
- Persson, M.; Jansson, P. Advances in Powder Metallurgy Soft Magnetic Composite Materials for Electrical Machines. In Proceedings of the IEE Colloquium on Impact of New Materials on Design, London, UK, 8 December 1995; pp. 1–6. [Google Scholar]
- Liew, G.S.; Ertugrul, N.; Soong, W.L.; Gayler, J. An Investigation of Advanced Magnetic Materials for Axial Field Brushless Permanent Magnet Motor Drives for Automotive Applications. In Proceedings of the 37th IEEE Power Electronics Specialists Conference, Jeju, Republic of Korea, 18–22 June 2006; pp. 1–7. [Google Scholar]
- Zhou, H.; Stoyanov, S.; Parsons, P.E.; McLaughlin, B.; Xiao, J.Q. Advanced Soft Magnetic Materials for High Frequency and High Power Applications. In Proceedings of the 26th Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Fort Worth, TX, USA, 6–11 March 2011; pp. 163–167. [Google Scholar]
- Sarker, P.C.; Islam, M.R.; Guo, Y.; Zhu, J.; Lu, H.Y. State-of-the-Art Technologies for Development of High Frequency Transformers with Advanced Magnetic Materials. IEEE Trans. Appl. Supercond. 2019, 29, 7000111. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Liu, L.; Ba, X.; Lu, H.; Lei, G.; Yin, W.; Zhu, J. Designing High-Power-Density Electric Motors for Electric Vehicles with Advanced Magnetic Materials. World Electr. Veh. J. 2023, 14, 114. [Google Scholar] [CrossRef]
- Islam, M.R.; Guo, Y.; Lin, Z.W.; Zhu, J. An Amorphous Alloy Core Medium Frequency Magnetic-Link for Medium Voltage PV Inverters. J. Appl. Phys. 2014, 115, 17E710. [Google Scholar] [CrossRef] [Green Version]
- Kauder, T.; Hameyer, K. Performance Factor Comparison of Nanocrystalline, Amorphous, and Crystalline Soft Magnetic Materials for Medium-Frequency Applications. IEEE Trans. Magn. 2017, 53, 8401504. [Google Scholar] [CrossRef]
- Khan, S.A.; Islam, M.R.; Guo, Y.; Zhu, J.G. An Amorphous Alloy Magnetic-Bus-Based SiC NPC Converter with Inherent Voltage Balancing for Grid-Connected Renewable Energy Systems. IEEE Trans. Appl. Supercond. 2019, 29, 5400108. [Google Scholar] [CrossRef]
- Agheb, E.; Bahmani, M.A.; Hoidalen, H.K.; Thiringer, T. Core Loss Behavior in High Frequency High Power Transformers-II: Arbitrary Excitation. J. Renew. Sustain. Energy 2012, 4, 033113. [Google Scholar] [CrossRef]
- Lu, H.; Guo, Y.; Zhu, J.; Zhong, J.; Jin, J. Soft Magnetic Materials for High Frequency High Power Density Transformers in Power Electronic Systems. Acad. Mag. 2007, 1, 11–16. [Google Scholar]
- Ahmad, Z.; Khan, S.; Waqar, S.; Maqsood, R.; Ali, Z.A. Magnetic and Structural Properties of Manganese Zinc Soft Ferrite for High-Frequency Applications. IEEE Trans. Magn. 2022, 58, 2801008. [Google Scholar] [CrossRef]
- Grossinger, R.; Turtelli, R.S. Amorphous and Nanocrystalline Alloys. IEEE Trans. Magn. 1994, 30, 455–460. [Google Scholar] [CrossRef]
- Hasegawa, R. Present Status of Amorphous Soft Magnetic Alloys. J. Magn. Magn. Mater. 2000, 215–216, 240–245. [Google Scholar] [CrossRef]
- Willard, M.A.; Claassen, J.H.; Harris, V.G. Magnetic and Structural Properties of Amorphous and Nanocrystalline FeNi-based Alloys. In Proceedings of the 1st IEEE Conference Nanotechnology (IEEE-NANO), Maui, HI, USA, 28–30 October 2001; pp. 51–55. [Google Scholar]
- Varga, L.K. Soft Magnetic Nanocomposites for High-Frequency and High-Temperature Applications. J. Magn. Magn. Mater. 2007, 316, 442–447. [Google Scholar] [CrossRef]
- Dumitrescu, B.; Ciureanu, S.A.; Cavrila, H. Magnetic Properties of Nanocrystalline Films and Amorphous Co-rich Alloys. In Proceedings of the International Symposium on Fundamentals of Electrical Engineering (ISFEE), Bucharest, Romania, 30 June–2 July 2016; pp. 1–4. [Google Scholar]
- Theisen, E.A. Recent Advances and Remaining Challenges in Manufacturing of Amorphous and Nanocrystalline Alloys. IEEE Trans. Magn. 2022, 58, 2001207. [Google Scholar] [CrossRef]
- Draxler, K.; Styblikova, R. Use of Nanocrystalline Materials for Current Transformer Construction. J. Magn. Magn. Mater. 1996, 157–158, 447–448. [Google Scholar] [CrossRef]
- Ferch, M. Light Transformers for Kilowatt SMPS Based on Nanocrystalline Soft Magnetic Cores. In Proceedings of the 7th International Conference on Power Electronics and Variable Speed Drives, London, UK, 21–23 September 1998; pp. 411–415. [Google Scholar]
- Costa, F.; Alves, F.; Desmoulins, J.B.; Herisson, D. Design of a Flyback Transformer Using a Stress Annealed Finemet Nanocrystalline Alloy. In Proceedings of the 31st Annual Power Electronics Specialists Conference, Galway, Ireland, 18–23 June 2000; pp. 308–313. [Google Scholar]
- Shen, W.; Wang, F.; Boroyevich, D.; Tipton, C.W. High Power Density Nanocrystalline Core Transformer Design for Resonant Converter Systems. In Proceedings of the 40th IEEE Industry Applications Society Annual Meeting, Hong Kong, China, 2–6 October 2005; pp. 2216–2222. [Google Scholar]
- Lin, Z.W.; Zhu, J.G.; Guo, Y.; Johansen, T.H.; Yoshizawa, Y. Flux Distribution at the Cross Section of Stacked Nanostructured Magnetic Ribbon. IEEE Trans. Magn. 2009, 45, 3912–3914. [Google Scholar] [CrossRef] [Green Version]
- Shafik, Z.M.; Ahmed, K.H.; Finney, S.J.; Williams, B.W. Nanocrystalline Cored Transformer Design and Implementation for a High Current and Low Voltage DC/DC Converter. In Proceedings of the 5th IET International Conference Power Electronics, Machines and Drives (PEMD), Brighton, UK, 19–21 April 2010; pp. 1–6. [Google Scholar]
- Seltzman, A.H.; Nonn, P.D.; Anderson, J.K. Design and Modeling of Nanocrystalline Iron Core Resonant Transformers for Pulsed Power Applications. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 1153–1160. [Google Scholar] [CrossRef]
- Sefa, I.; Balci, S.; Bayram, M.B. A Comparative Study of Nanocrystalline and SiFe Core Materials for Medium-Frequency Transformers. In Proceedings of the 6th International Conference Electronics, Computers and Artificial Intelligence (ECAI), Bucharest, Romania, 23–25 October 2014; pp. 43–48. [Google Scholar]
- Balci, S.; Sefa, I.; Altin, N. Design and Analysis of a 35 kVA Medium Frequency Power Transformer with the Nanocrystalline Core Material. Int. J. Hydrogen Energy 2017, 42, 17895–17909. [Google Scholar] [CrossRef]
- Kauder, T.; Hameyer, K. Iron Loss Comparison of Standard SiFe and Nanocrystalline Materials for Power Transformers in a Dual Active Bridge Converter. In Proceedings of the 18th European Conference Power Electronics and Applications (EPE’16 ECCE Europe), Karlsruhe, Germany, 5–9 September 2016; pp. 1–10. [Google Scholar]
- Jiang, X.; Xu, J.; Cui, B.; Zeng, Y.; Li, Z. Evaluations and Measurements of a High Frequency Nanocrystalline Core Transformer for Power Converters. In Proceedings of the 41st Annual Conference IEEE Industrial Electronics Society (IECON), Yokohama, Japan, 9–12 November 2015; pp. 3660–3664. [Google Scholar]
- Warnakulasuriya, K.; Nabhani, F.; Askari, V. Development of a 100 kW, 20 kHz Nanocrystalline Core Transformer for DC/DC Converter Applications. In Proceedings of the International Exhibition and Conference Power Electronics, Intelligent Motion, Renewable Energy and Energy Management (PCIM Europe), Nuremburg, Germany, 10–12 May 2016; pp. 1439–1446. [Google Scholar]
- Li, H.; Yuan, D.; Wang, S.; Wang, S.H.; Zhu, J. Core Losses Calculation of Nanocrystalline Alloy High Frequency Transformer Considering Magnetic Hysteresis Effects. In Proceedings of the 20th International Conference Electrical Machines and Systems (ICEMS), Sydney, Australia, 11–14 August 2017; pp. 1–4. [Google Scholar]
- Grybos, D.; Leszczynski, J.; Swieboda, C.; Kwiecien, M.; Rygal, R.; Soinski, M. Magnetic Properties of Composite Cores Made of Nanocrystalline Material for High Frequency Inductors and Transformers. In Proceedings of the Innovative Materials and Technologies in Electrical Engineering (i-MITEL), Sulecin, Poland, 18–20 April 2018; pp. 1–6. [Google Scholar]
- Ruiz-Robles, D.; Venegas-Rebollar, V.; Anaya-Ruiz, A.; Moreno-Goytia, E.L.; Rodriguez-Rodriguez, J.R. Design and Prototyping Medium-Frequency Transformers Featuring a Nanocrystalline Core for DC-DC Converters. Energies 2018, 11, 2081. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Robles, D.; Ortiz-Marin, J.; Venegas-Rebollar, V.; Moreno-Goytia, E.L.; Granados-Lieberman, D.; Rodriguez-Rodriguez, J.R. Nanocrystalline and Silicon Steel Medium-Frequency Transformers Applied to DC-DC Converters: Analysis and Experimental Comparison. Energies 2019, 12, 2069. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Wang, T.; Hu, L.; Chen, X.; Liu, N.; Chen, L. Design and Optimization of High Frequency Transformer with Nanocrystalline Core. In Proceedings of the International Conference Intelligent Green Building and Smart Grid (IGBSG), Yichang, China, 6–9 September 2019; pp. 246–249. [Google Scholar]
- Chen, B.; Liang, X.; Wang, N. Design Methodology for Inductor-Integrated Litz-Wired High-Power Medium-Frequency Transformer With the Nanocrystalline Core Material for Isolated DC-Link Stage of Solid-State Transformer. IEEE Trans. Power Electron. 2020, 35, 11557–11573. [Google Scholar] [CrossRef]
- Li, X.; Jiang, C.; Zhao, H.; Wen, B.; Jiang, Y.; Long, T. Novel Flexible Nanocrystalline Flake Ribbons for High-Frequency Transformer Design. In Proceedings of the IEEE Applied Power Electronics Conference and Exposition (APEC), Online, 14–17 June 2021; pp. 2891–2896. [Google Scholar]
- Luo, Z.; Li, X.; Jiang, C.; Long, T. Characterization of Nanocrystalline Flake Ribbon for High Frequency Magnetic Cores. IEEE Trans. Power Electron. 2022, 37, 14011–14016. [Google Scholar] [CrossRef]
- Milkovic, M.; Luborsky, F.E.; Chen, D.; Tompkins, R.E. Electronic Transformer Using Amorphous Material. IEEE Trans. Magn. 1977, 13, 1224–1226. [Google Scholar] [CrossRef]
- Yamamoto, M.; Mori, T.; Kawasaki, T.; Tsutsui, K.; Itoh, T.; Yagisawa, T. A Design Study of Amorphous Core Transformer. IEEE Trans. Magn. 1984, 20, 1771–1773. [Google Scholar] [CrossRef]
- Alexandrov, N.; Schulz, R.; Roberge, R. Amorphous Alloys for Distribution Transformers: Design Considerations and Economic Impact. IEEE Trans. Power Deliv. 1987, 2, 420–424. [Google Scholar] [CrossRef]
- Lee, J.-K.; Kim, W.-S.; Hahn, S.-Y.; Choi, K.-D.; Cha, G. Development of a Three Phase 100 kVA Superconducting Power Transformer with Amorphous Cores. IEEE Trans. Appl. Supercond. 1999, 9, 1293–1296. [Google Scholar]
- Wang, Y.; Zhao, X.; Han, J.; Li, H.; Guan, Y.; Bao, Q.; Xiao, Y.; Lin, L.; Xu, X.; Song, N.; et al. Development of a 630 kVA Three-Phase HTS Transformer With Amorphous Alloy Cores. IEEE Trans. Appl. Supercond. 2007, 17, 2051–2054. [Google Scholar] [CrossRef]
- Islam, M.R.; Lei, G.; Guo, Y.; Zhu, J. Optimal Design of High-Frequency Magnetic Links for Power Converters Used in Grid-Connected Renewable Energy Systems. IEEE Trans. Magn. 2014, 50, 2006204. [Google Scholar] [CrossRef]
- Islam, M.R.; Guo, Y.; Jafari, M.; Malekjamshidi, Z.; Zhu, J. A 43-level 33 kv 3-phase Modular Multilevel Cascaded Converter for Direct Grid Integration of Renewable Generation Systems. In Proceedings of the IEEE Innovative Smart Grid Technologies—Asia (ISGT Asia), Kuala Lumpur, Malaysia, 20–23 May 2014; pp. 594–599. [Google Scholar]
- Islam, M.R.; Guo, Y.; Zhu, J. A Multilevel Medium-Voltage Inverter for Step-Up-Transformer-Less Grid Connection of Photovoltaic Power Plants. IEEE J. Photovolt. 2014, 4, 881–889. [Google Scholar] [CrossRef]
- Islam, M.R.; Guo, Y.; Zhu, J. A High-Frequency Link Multilevel Cascaded Medium-Voltage Converter for Direct Grid Integration of Renewable Energy Systems. IEEE Trans. Power Electron. 2014, 29, 4167–4182. [Google Scholar] [CrossRef]
- Jafari, M.; Malekjamshidi, Z.; Lei, G.; Wang, T.; Platt, G.; Zhu, J. Design and Implementation of an Amorphous High-Frequency Transformer Coupling Multiple Converters in a Smart Microgrid. IEEE Trans. Ind. Electron. 2017, 64, 1028–1037. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.R.; Muttaqi, K.M.; Sutato, D.; Zhu, J. Design and Implementation of Amorphous Magnetic Material Common Magnetic Bus for the Replacement of Common DC Bus. IEEE Trans. Magn. 2018, 50, 2002004. [Google Scholar] [CrossRef]
- Islam, M.R.; Mahfuz-Ur-Rahman, A.M.; Islam, M.M.; Guo, Y.G.; Zhu, J.G. Modular Medium-Voltage Grid-Connected Converter With Improved Switching Techniques for Solar Photovoltaic Systems. IEEE Trans. Ind. Electron. 2017, 64, 8887–8896. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Chen, L.; Guo, W.; Shangguan, C.; Zuo, J.; He, K. Optimal Design of Medium-Frequency Fe-Based Amorphous Transformers Based on Genetic Algorithm. IEEE Trans. Plasma Sci. 2018, 46, 3240–3248. [Google Scholar] [CrossRef]
- Kiran, M.R.; Farrok, O.; Islam, M.R.; Zhu, J. Characterization of the Optimized High Frequency Transformer Using Nanocrystalline and Amorphous Magnetic Materials. In Proceedings of the 22nd International Conference Electrical Machines (ICEMS), Harbin, China, 11–14 August 2019; pp. 1–4. [Google Scholar]
- Kiran, M.R.; Farrok, O.; Islam, M.R.; Zhu, J. Increase in the Power Transfer Capability of Advanced Magnetic Material Based High Frequency Transformer by Using a Novel Distributed Winding Topology. IEEE Trans. Ind. Appl. 2021, 57, 6306–6317. [Google Scholar] [CrossRef]
- Liu, D.; Zhong, W.; Zhou, C. Optimization Design of Amorphous Metal Distribution Transformer Based on Improved Quantum Particle Swarm Optimization Algorithm. In Proceedings of the 18th International Conference AC and DC Power Transmission (ACDC), Online, 2–3 July 2022; pp. 1–4. [Google Scholar]
- Zhang, S.; Chen, D.; Bai, B. Study of a High-Power Medium Frequency Transformer Using Amorphous Magnetic Material. Symmetry 2022, 14, 2129. [Google Scholar] [CrossRef]
- Denis, N.; Inoue, M.; Fujisaki, K.; Itabashi, H.; Yano, T. Iron Loss Reduction in Permanent Magnet Synchronous Motor by Using Stator Core Made of Nanocrystalline Magnetic Material. IEEE Trans. Magn. 2017, 53, 8110006. [Google Scholar] [CrossRef]
- Yao, A.; Sugimoto, T.; Odawara, S.; Fujisaki, K. Core Loss Properties of a Motor With Nanocrystalline Rotor and Stator Cores Under Inverter Excitation. IEEE Trans. Magn. 2018, 54, 8203205. [Google Scholar] [CrossRef]
- Mischler, W.R.; Rosenberry, G.M.; Frischmann, P.G.; Tompkins, R.E. Test Results on a Low Loss Amorphous Iron Induction Motor. IEEE Trans. Power Appar. Syst. 1981, PAS-100, 2907–2911. [Google Scholar] [CrossRef]
- Johnson, L.A.; Cornell, E.P.; Bailey, D.J.; Hegyi, S.M. Applications of Low Loss Amorphous Metals in Motors and Transformers. IEEE Trans. Power Appar. Syst. 1982, PAS-101, 2109–2114. [Google Scholar] [CrossRef]
- Fukao, T.; Chiba, A.; Matsui, M. Test Results on a Super-High-Speed Amorphous-Iron Reluctance Motor. IEEE Trans. Ind. Appl. 1989, 25, 119–125. [Google Scholar] [CrossRef]
- Jensen, C.C.; Profumo, F.; Lipo, T.A. A Low-Loss Permanent-Magnet Brushless dc Motor Utilizing Tape Wound Amorphous Iron. IEEE Trans. Ind. Appl. 1992, 28, 646–651. [Google Scholar] [CrossRef]
- Liew, G.S.; Ertugrul, N.; Soong, W.L.; Gayler, J. Investigation of Axial Field Permanent Magnet Motor Utilizing Amorphous Magnetic Material. In Proceedings of the Australasian Universities Power Engineering Conference (AUPEC), Hobart, Australia, 25–28 September 2005; pp. 1–6. [Google Scholar]
- Wang, Z.; Enomoto, Y.; Ito, Y.; Masaki, R.; Morinaga, S.; Itabashi, H.; Tanigawa, S. Development of an Axial Gap Motor With Amorphous Metal Core. In Proceedings of the International Conference Electrical Machines and Systems (ICEMS), Tokyo, Japan, 15–18 November 2009; pp. 1–6. [Google Scholar]
- Kolano, R.; Krykowski, K.; Kolano-Burian, A.; Polak, M.; Szynowski, J.; Zackiewicz, P. Amorphous Soft Magnetic Materials for the Stator of a Novel High-Speed PMBLDC Motor. IEEE Trans. Magn. 2012, 49, 1367–1371. [Google Scholar] [CrossRef]
- Fan, T.; Li, Q.; Wen, X. Development of a High Power Density Motor Made of Amorphous Ally Cores. IEEE Trans. Ind. Electron. 2014, 61, 4510–4518. [Google Scholar] [CrossRef]
- Dems, M.; Komeza, K. Performance Characteristics of a High-Speed Energy-Saving Induction Motor With an Amorphous Stator Core. IEEE Trans. Ind. Electron. 2014, 61, 3046–3055. [Google Scholar] [CrossRef]
- Okamoto, S.; Denis, N.; Kato, Y.; Ieki, M.; Fujisaki, K. Core Loss Reduction of an Interior Permanent-Magnet Synchronous Motor Using Amorphous Stator Core. IEEE Trans. Ind. Appl. 2016, 52, 2261–2268. [Google Scholar] [CrossRef]
- Li, T.; Zhang, Y.; Liang, Y.; Ai, Q.; Dou, H. Multiphysics Analysis of an Axial-Flux In-Wheel Motor with an Amorphous Alloy Stator. IEEE Access 2020, 8, 27414–27425. [Google Scholar] [CrossRef]
- Simuzu, S.; Byerly, K.; Schneider, K.; Kim, H.; Nations, M.; Narasimhan, S.; Beddingfield, R.; Bhattachayara, S.; McHenry, M.E. Flux Switching Permanent Magnet Motor with Metal Amorphous Nanocomposite Soft Magnetic Material and Rare Earth Free Permanent Magnets. In Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE), Online, 10–14 October 2021; pp. 3866–3872. [Google Scholar]
- Fan, Z.; Yi, H.; Xu, J.; Xie, K.; Qi, Y.; Ren, S.; Wang, H. Performance Study and Optimization Design of High-Speed Amorphous Alloy Induction Motor. Energies 2021, 14, 2468. [Google Scholar] [CrossRef]
- Chai, F.; Hu, M.; Li, Z.; Geng, L. Vibration Characteristic Analysis and Comparison of High-Speed Switched Reluctance Motor With Amorphous Alloy Core. In Proceedings of the International Power Electronics Conference 2022, Himeji, Japan, 15–19 May 2022; pp. 1536–1541. [Google Scholar]
- Sarker, P.C.; Guo, Y.; Lu, H.Y.; Zhu, J.G. Two Dimensional Measurement of Magnetic Field and Core Loss Using a Square Specimen Tester. IEEE Trans. Magn. 2021, 57, 8402008. [Google Scholar]
- Guo, Y.; Zhu, J.G.; Watterson, P.A.; Wu, W. Comparative Study of 3-D Flux Electrical Machines With Soft Magnetic Composite Cores. IEEE Trans. Ind. Appl. 2003, 39, 1689–1696. [Google Scholar]
- Yang, Q.; Li, Y.; Zhao, Z.; Zhu, L.; Luo, Y.; Zhu, J. Design of a 3-D Rotational Magnetic Properties Measurement Structure for Soft Magnetic Materials. IEEE Trans. Appl. Supercond. 2014, 24, 8200804. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, L.; Ba, X.; Lu, H.; Lei, G.; Yin, W.; Zhu, J. Measurement and Modeling of Magnetic Materials under 3D Vectorial Magnetization for Electrical Machine Design and Analysis. Energies 2023, 16, 417. [Google Scholar] [CrossRef]
- Stranges, N.; Findlay, R.D. Importance of Rotational Iron Loss Data for Accurate Prediction of Rotating Machine Core Losses. In Proceedings of the IEEE Industry Applications Society Annual Meeting, Denver, CO, USA, 2–6 October 1994; pp. 123–127. [Google Scholar]
- Guo, Y.; Zhu, J.G.; Zhong, J.; Lu, H.; Jin, J.X. Measurement and Modeling of Rotational Core Losses of Soft Magnetic Materials Used in Electrical Machines: A Review. IEEE Trans. Magn. 2008, 44, 279–291. [Google Scholar]
- Pfutzner, H.; Mulasalihovic, E.; Yamaguchi, H.; Sabic, D.; Shilyashki, G.; Hofbauer, F. Rotational Magnetization in Transformer Cores-A Review. IEEE Trans. Magn. 2011, 47, 4523–4533. [Google Scholar] [CrossRef]
- Akiror, J.C.; Wanjiku, J.; Pillay, P.; Cave, J.; Merkhouf, A. Rotational Core Loss Magnetizer: Design and Measurements. IEEE Trans. Ind. Appl. 2018, 54, 4355–4364. [Google Scholar] [CrossRef]
- Enokizono, M.; Shirakawa, G.; Sievert, J. Anomalous Anisotropy and Rotational Magnetic Properties of Amorphous Sheet. J. Magn. Magn. Mater. 1992, 112, 195–199. [Google Scholar] [CrossRef]
- Ueno, S.; Todaka, T.; Enokizono, M. Measurement of Vector Magnetic Properties of Fe-Si-B Amorphous Material. IEEE Trans. Magn. 2011, 47, 3188–3197. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, L.; Ba, X.; Lu, H.; Lei, G.; Sarker, P.; Zhu, J. Characterization of Rotational Magnetic Properties of Amorphous Metal Materials for Advanced Electrical Machines Design and Analysis. Energies 2022, 15, 7798. [Google Scholar] [CrossRef]
- Guo, Y.; Zhu, J.; Lu, H.; Lin, Z.; Li, Y. Core Loss Calculation for Soft Magnetic Composite Electrical Machines. IEEE Trans. Magn. 2012, 48, 3112–3115. [Google Scholar] [CrossRef]
- Sarker, P.C.; Guo, Y.; Lu, H.; Zhu, J. A Generalized Inverse Preisach Dynamic Hysteresis Model of Fe-Based Amorphous Magnetic Materials. J. Magn. Magn. Mater. 2020, 514, 167290. [Google Scholar] [CrossRef]
- Sarker, P.C.; Guo, Y.; Lu, H.; Zhu, J. Improvement on Parameter Identification of Modified Jiles-Atherton Model for Iron Loss Calculation. J. Magn. Magn. Mater. 2022, 542, 168602. [Google Scholar] [CrossRef]
- Liu, G.; Liu, M.; Zhang, Y.; Wang, H.; Gerard, C. High-Speed Permanent Magnet Synchronous Motor Iron Loss Calculation Method Considering Multiphysics Factors. IEEE Trans. Ind. Electron. 2019, 67, 5360–5368. [Google Scholar] [CrossRef]
- Liu, L.; Guo, Y.; Lei, G.; Zhu, J.G. Iron Loss Calculation for High-Speed Permanent Magnet Machines Considering Rotating Magnetic Field and Thermal Effects. IEEE Trans. Appl. Supercond. 2021, 31, 5205105. [Google Scholar] [CrossRef]
- Liu, L.; Ba, X.; Guo, Y.; Lei, G.; Sun, X.; Zhu, J. Improved Iron Loss Prediction Models for Interior PMSMs Considering Coupling Effects of Multiphysics Factors. IEEE Trans. Transp. Electrif. 2023, 9, 416–427. [Google Scholar] [CrossRef]
- Liu, L.; Guo, Y.; Yin, W.; Lei, G.; Zhu, J. Design and Optimization Technologies of Permanent Magnet Machines and Drive Systems Based on Digital Twin Model. Energies 2022, 15, 6186. [Google Scholar] [CrossRef]
- Guo, Y.; Zhu, J.; Liu, D.; Lu, H.; Wang, S. Application of Multi-Level Multi-Domain Modeling in the Design and Analysis of a PM Transverse Flux Motor with SMC Core. In Proceedings of the 7th International Conference Power Electronics and Drive Systems (PEDS), Bangkok, Thailand, 27–30 November 2007; pp. 27–31. [Google Scholar]
- Lei, G.; Wang, T.; Zhu, J.; Guo, Y. Robust Multiobjective and Multidisciplinary Design Optimization of Electrical Drive System. CES Trans. Electr. Mach. Syst. 2018, 2, 409–416. [Google Scholar] [CrossRef]
- Diao, K.; Sun, X.; Lei, G.; Guo, Y.; Zhu, J. Multiobjective System Level Optimization Method for Switched Reluctance Motor Drive Systems Using Finite Element Model. IEEE Trans. Ind. Electron. 2020, 67, 10055–10064. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Liu, L.; Yin, W.; Lu, H.; Lei, G.; Zhu, J. Developing High-Power-Density Electromagnetic Devices with Nanocrystalline and Amorphous Magnetic Materials. Nanomaterials 2023, 13, 1963. https://doi.org/10.3390/nano13131963
Guo Y, Liu L, Yin W, Lu H, Lei G, Zhu J. Developing High-Power-Density Electromagnetic Devices with Nanocrystalline and Amorphous Magnetic Materials. Nanomaterials. 2023; 13(13):1963. https://doi.org/10.3390/nano13131963
Chicago/Turabian StyleGuo, Youguang, Lin Liu, Wenliang Yin, Haiyan Lu, Gang Lei, and Jianguo Zhu. 2023. "Developing High-Power-Density Electromagnetic Devices with Nanocrystalline and Amorphous Magnetic Materials" Nanomaterials 13, no. 13: 1963. https://doi.org/10.3390/nano13131963
APA StyleGuo, Y., Liu, L., Yin, W., Lu, H., Lei, G., & Zhu, J. (2023). Developing High-Power-Density Electromagnetic Devices with Nanocrystalline and Amorphous Magnetic Materials. Nanomaterials, 13(13), 1963. https://doi.org/10.3390/nano13131963