Enhanced Optical Transmission through a Hybrid Bull’s Eye Structure Integrated with a Silicon Hemisphere
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Touch, J.; Badawy, A.-H.; Sorger, V.J. Optical computing. Nanophotonics 2017, 6, 503–505. [Google Scholar] [CrossRef]
- Gu, M.; Li, X.; Cao, Y. Optical storage arrays: A perspective for future big data storage. Light Sci. Appl. 2014, 3, e177. [Google Scholar] [CrossRef] [Green Version]
- Ebbesen, T.W.; Lezec, H.J.; Ghaemi, H.F.; Thio, T.; Wolff, P.A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 1998, 391, 667–669. [Google Scholar] [CrossRef]
- Li, J.Y.; Zhang, C. Surface plasmon resonance sensor based at metallic subwavelength structures. Optik 2015, 126, 1291–1294. [Google Scholar] [CrossRef]
- Yang, J.-C.; Gao, H.; Suh, J.Y.; Zhou, W.; Lee, M.H.; Odom, T.W. Enhanced Optical Transmission Mediated by Localized Plasmons in Anisotropic, Three-Dimensional Nanohole Arrays. Nano Lett. 2010, 10, 3173–3178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.Q.; Li, P.; Zhang, S.; Chen, Y.Q.; Liu, P.; Duan, H.G. Enhanced extraordinary optical transmission and refractive-index sensing sensitivity in tapered plasmonic nanohole arrays. Nanotechnology 2019, 30, 9. [Google Scholar] [CrossRef]
- Sankur, H.; Southwell, W.H. Broadband gradient-index antireflection coating for ZnSe. Appl. Opt. 1984, 23, 2770–2773. [Google Scholar] [CrossRef]
- Gao, P.; Li, X.; Zhao, Z.; Ma, X.; Pu, M.; Wang, C.; Luo, X. Pushing the plasmonic imaging nanolithography to nano-manufacturing. Opt. Commun. 2017, 404, 62–72. [Google Scholar] [CrossRef]
- Thio, T.; Pellerin, K.; Linke, R.; Lezec, H.; Ebbesen, T. Enhanced light transmission through a single subwavelength aperture. Opt. Lett. 2002, 26, 1972–1974. [Google Scholar] [CrossRef] [Green Version]
- Lezec, H.J.; Degiron, A.; Devaux, E.; Linke, R.A.; Martin-Moreno, L.; Garcia-Vidal, F.J.; Ebbesen, T.W. Beaming light from a subwavelength aperture. Science 2002, 297, 820–822. [Google Scholar] [CrossRef]
- Ishi, T.; Fujikata, J.; Makita, K.; Baba, T.; Ohashi, K. Si Nano-Photodiode with a Surface Plasmon Antenna. Jpn. J. Appl. Phys. 2005, 44. [Google Scholar] [CrossRef]
- Ren, F.F.; Ang, K.W.; Ye, J.; Yu, M.; Lo, G.Q.; Kwong, D.L. Split Bull’s eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector. Nano Lett. 2011, 11, 1289–1293. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, D.; Fujikata, J.; Ohashi, K. InGaAs Nano-Photodiode Enhanced Using Polarization-Insensitive Surface-Plasmon Antennas. Jpn. J. Appl. Phys. 2011, 50, 120201. [Google Scholar] [CrossRef]
- Weibin, C.; Nelson, R.L.; Abeysinghe, D.C.; Qiwen, Z. Optimal Plasmon Focusing with Spatial Polarization Engineering. Opt. Photonics News 2009, 20, 36–41. [Google Scholar] [CrossRef]
- Aouani, H.; Mahboub, O.; Devaux, E.; Rigneault, H.; Ebbesen, T.W.; Wenger, J. Large molecular fluorescence enhancement by a nanoaperture with plasmonic corrugations. Opt. Express 2011, 19, 13056–13062. [Google Scholar] [CrossRef]
- Tawa, K.; Izumi, S.; Sasakawa, C.; Hosokawa, C.; Toma, M. Enhanced fluorescence microscopy with the Bull’s eye-plasmonic chip. Opt. Express 2017, 25, 10622–10631. [Google Scholar] [CrossRef]
- Wang, Y.F.; Luong, H.; Zhang, Z.J.; Zhao, Y.P. Coupling between plasmonic nanohole array and nanorod array: The emerging of a new extraordinary optical transmission mode and epsilon-near-zero property. J. Phys. D-Appl. Phys. 2020, 53, 10. [Google Scholar] [CrossRef]
- Bao, Y.J.; Peng, R.W.; Shu, D.J.; Wang, M.; Lu, X.; Shao, J.; Lu, W.; Ming, N.B. Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array. Phys. Rev. Lett. 2008, 101, 4. [Google Scholar] [CrossRef]
- Ghosh, R.R.; Dhawan, A. Extremely large near-field enhancements in the vicinity of plasmonic nanoantennas on top of bull’s eye structures exhibiting the extra ordinary transmission of light. OSA Contin. 2021, 4, 193–211. [Google Scholar] [CrossRef]
- Wang, D.X.; Yang, T.; Crozier, K.B. Optical antennas integrated with concentric ring gratings: Electric field enhancement and directional radiation. Opt. Express 2011, 19, 2148–2157. [Google Scholar] [CrossRef]
- Arabi, H.E.; Joe, H.E.; Nazari, T.; Min, B.K.; Oh, K. An Above-Wavelength-Sized Bull’s Eye and Its Application to High Throughput Photon Sorters. In Proceedings of the Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 6–11 May 2012. [Google Scholar]
- Degiron, A.; Ebbesen, T.W. Analysis of the transmission process through single apertures surrounded by periodic corrugations. Opt. Express 2004, 12, 3694–3700. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.Q.; Liu, Y.Y.; Shi, Y.P.; Zhang, Y.F.; Song, J.M.; Li, M.P.; Shi, S.N.; Zhang, S.; Wang, X.D.; Yang, F.H. Enhanced THz Transmission by Bull’s Eye Structure Integrated with a Concentric Gold Hemisphere. Crystals 2022, 12, 10. [Google Scholar] [CrossRef]
- Song, J.M.; Shi, Y.P.; Li, M.P.; Liu, X.Y.; Wang, X.D.; Yang, F.H.; Feng, H.Y. Enhanced extraordinary terahertz transmission through coupling between silicon resonators. Nanoscale Adv. 2022, 4, 2494–2500. [Google Scholar] [CrossRef] [PubMed]
- Sugaya, T.; Iguchi, T.; Kawano, Y. Resonant Frequency Tuning and Transmission Enhancement of Terahertz Plasmonic Antenna by Dielectric Engineering. In Proceedings of the 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Cancun, Mexico, 27 August–1 September 2017. [Google Scholar]
- Mie, G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Der Phys. 1908, 330, 377–445. [Google Scholar] [CrossRef]
- Ordal, M.A.; Bell, R.J.; Alexander, R.W., Jr.; Long, L.L.; Querry, M.R. Optical properties of Au, Ni, and Pb at submillimeter wavelengths. Appl. Opt. 1987, 26, 744–752. [Google Scholar] [CrossRef]
- Arabi, H.E.; Joe, H.-E.; Nazari, T.; Min, B.-K.; Oh, K. A high throughput supra-wavelength plasmonic bull’s eye photon sorter spatially and spectrally multiplexed on silica optical fiber facet. Opt. Express 2013, 21, 28083–28094. [Google Scholar] [CrossRef]
- Song, J.M.; Shi, Y.P.; Liu, X.Y.; Li, M.P.; Wang, X.D.; Yang, F.H. Enhanced broadband extraordinary terahertz transmission through plasmon coupling between metal hemisphere and hole arrays. Opt. Mater. Express 2021, 11, 2700–2710. [Google Scholar] [CrossRef]
- Ishihara, K.; Hatakoshi, G.-i.; Ikari, T.; Minamide, H.; Ito, H.; Ohashi, K. Terahertz Wave Enhanced Transmission through a Single Subwavelength Aperture with Periodic Surface Structures. Jpn. J. Appl. Phys. 2005, 44. [Google Scholar] [CrossRef]
- Barnes, W.L.; Dereux, A.; Ebbesen, T.W. Surface plasmon subwavelength optics. Nature 2003, 424, 824–830. [Google Scholar] [CrossRef]
- Laux, E.; Genet, C.; Skauli, T.; Ebbesen, T.W. Plasmonic photon sorters for spectral and polarimetric imaging. Nat. Photonics 2008, 2, 161–164. [Google Scholar] [CrossRef]
- Villate-Guio, F.; Lopez-Tejeira, F.; Garcia-Vidal, F.J.; Martin-Moreno, L.; de Leon-Perez, F. Optimal light harvesting structures at optical and infrared frequencies. Opt. Express 2012, 20, 25441–25453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Fang, J.; Lin, Y.; Shi, S.; Di, C.; Zhang, S.; Sun, M.; Shi, Y.; Zhang, Y. Enhanced Optical Transmission through a Hybrid Bull’s Eye Structure Integrated with a Silicon Hemisphere. Nanomaterials 2023, 13, 1935. https://doi.org/10.3390/nano13131935
Liu Y, Fang J, Lin Y, Shi S, Di C, Zhang S, Sun M, Shi Y, Zhang Y. Enhanced Optical Transmission through a Hybrid Bull’s Eye Structure Integrated with a Silicon Hemisphere. Nanomaterials. 2023; 13(13):1935. https://doi.org/10.3390/nano13131935
Chicago/Turabian StyleLiu, Yueyang, Jiukai Fang, Yuwen Lin, Shengnan Shi, Chengzhe Di, Shan Zhang, Mingqi Sun, Yanpeng Shi, and Yifei Zhang. 2023. "Enhanced Optical Transmission through a Hybrid Bull’s Eye Structure Integrated with a Silicon Hemisphere" Nanomaterials 13, no. 13: 1935. https://doi.org/10.3390/nano13131935
APA StyleLiu, Y., Fang, J., Lin, Y., Shi, S., Di, C., Zhang, S., Sun, M., Shi, Y., & Zhang, Y. (2023). Enhanced Optical Transmission through a Hybrid Bull’s Eye Structure Integrated with a Silicon Hemisphere. Nanomaterials, 13(13), 1935. https://doi.org/10.3390/nano13131935