Nanoarhitectonics of Inorganic–Organic Silica–Benzil Composites: Synthesis, Nanocrystal Morphology and Micro-Raman Analysis
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
3.1. Symmetry Considerations
3.2. Ab Initio Calculations
3.3. Raman Scattering
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Vasileiadi, T.; Noual, A.; Wang, Y.; Graczykowski, B.; Djafari-Rouhani, B.; Yang, S.; Fytas, G. Optomechanical hot-spots in metallic nanorod–polymer nanocomposites. ACS Nano 2022, 16, 20419–20429. [Google Scholar] [CrossRef]
- Wan, S.; Xi, X.; Zhang, H.; Ning, J.; Zheng, Z.; Zhang, Z.; Long, Y.; Deng, Y.; Fan, D.; Yang, P.; et al. Shape-mediated oriented assembly of concave nanoparticles under cylindrical confinement. ACS Nano 2022, 16, 21315–21323. [Google Scholar] [CrossRef] [PubMed]
- Kinloch, I.A.; Suhr, J.; Lou, J.; Young, J.; Ajayan, P.M. Composites with carbon nanotubes and graphene: An outlook. Science 2018, 362, 547–553. [Google Scholar] [CrossRef] [Green Version]
- Papageorgiou, D.G.; Li, Z.; Liu, M.; Kinloch, I.A.; Young, R.J. Mechanisms of mechanical reinforcement by graphene and carbon nanotubes in polymer nanocomposites. Nanoscale 2020, 12, 2228–2267. [Google Scholar] [CrossRef] [Green Version]
- Shchur, Y.; Pavlyuk, O.; Andrushchak, A.S.; Vitusevich, S.; Kityk, A.V. Porous Si partially filled with water molecules - crystal structure, energy bands and optical properties from first principles. Nanomaterials 2020, 10, 396. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulou, E.L.; Basnett, P.; Paul, U.C.; Marras, S.; Ceseracciu, L.; Roy, I.; Athanassiou, A. Green composites of poly(3-hydroxybutyrate) containing graphene nanoplatelets with desirable electrical conductivity and oxygen barrier properties. ACS Omega 2019, 4, 19746–19755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bach-Toledo, L.; Hryniewicz, B.M.; Marchesi, L.F.; Dall’Antonia, L.H.; Vidotti, M.; Wolfart, F. Conducting polymers and composites nanowires for energy devices: A brief reviews. Mater. Sci. Energy Technol. 2020, 3, 78–90. [Google Scholar] [CrossRef]
- Chen, S.; Li, Q.; Tian, D.; Ke, P.; Yang, X.; Wu, Q.; Chen, J.; Hu, C.; Ji, H. Assembly of long silver nanowires into highly aligned structure to achieve uniform “Hot Spots” for Surface-enhanced Raman scattering detection. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 273, 121030. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Chen, J.; Wang, J.; Li, X.; Zeng, H. Micro-patterned photoalignment of CsPbBr3 nanowires with liquid crystal molecule composite film for polarized emission. Nanoscale 2021, 13, 14980–14986. [Google Scholar] [CrossRef]
- Tamayo, L.; Palza, H.; Bejarano, J.; Zapata, P.A. Polymer composites with metal nanoparticles: Synthesis, properties, and applications. In Polymer Composites with Functionalized Nanoparticles, Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Khan, M.A.; Ghanim, R.W.; Kiser, M.R.; Moradipour, M.; Rogers, D.T.; Littleton, J.M.; Bradley, L.H.; Lynn, B.C.; Rankin, S.E.; Knutson, B.L. Strategy for conjugating oligopeptides to mesoporous silica nanoparticles using diazirine-based heterobifunctional linkers. Nanomaterials 2022, 12, 608. [Google Scholar] [CrossRef]
- Jamshidi, R.G.M. Synthesis of vinyl-based silica nanoparticles by sol–gel method and their influences on network microstructure and dynamic mechanical properties of nitrile rubber nanocomposites. Sci. Rep. 2022, 12, 15286. [Google Scholar]
- Yang, F.; Cui, H.; Wu, X.; Kim, S.; Hong, G. Ultrasound-activated luminescence with color tunability enabled by mechanoluminescent colloids and perovskite quantum dots. Nanoscale 2023, 15, 1629–1636. [Google Scholar] [CrossRef]
- Shchur, Y.; Kityk, A.V.; Strelchuk, V.V.; Nikolenko, A.S.; Andrushchak, N.A.; Huber, P.; Andrushchak, A.S. Paraelectric KH2PO4 nanocrystals in monolithic mesoporous silica: Structure and lattice dynamics. J. Alloys Compd. 2021, 868, 159177. [Google Scholar] [CrossRef]
- Shchur, Y.; Beltramo, G.; Andrushchak, A.S.; Vitusevich, S.; Huber, P.; Adamiv, V.T.; Teslyuk, I.; Boichuk, N.; Kityk, A.V. On the issue of textured crystallization of Ba(NO3)2 in mesoporous SiO2: Raman spectroscopy and lattice dynamics fnalysis. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 275, 121157. [Google Scholar] [CrossRef]
- Somseemee, O.; Saeoui, P.; Schevenels, F.T.; Siriwong, C. Enhanced interfacial interaction between modified cellulose nanocrystals and epoxidized natural rubber via ultraviolet irradiation. Sci. Rep. 2022, 12, 6682. [Google Scholar] [CrossRef]
- Karout, H.E.; Shchur, Y.; Andrushchak, A.; Sahraoui, B.; Wielgosz, R.; Kityk, O.; Jedryka, J.; Slyvka, Y.; Kityk, A.V. Second harmonic generation on crystalline nanoclusters in functionalized silica-benzil composites: Effect of extreme nanoconfinement on conversion efficiency. Sci. Rep. 2023, 13, 9943. [Google Scholar] [CrossRef]
- Thelen, M.; Bochud, N.; Brinker, M.; Prada, C.; Huber, P. Laser-excited elastic guided waves reveal the complex mechanics of nanoporous silicon. Nat. Commun. 2021, 12, 3597. [Google Scholar] [CrossRef] [PubMed]
- Patterson, A.L. The Scherrer formula for X-ray particle size determination. Phys. Rev. 1939, 56, 978–982. [Google Scholar] [CrossRef]
- Wang, J.P.P.Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244. [Google Scholar]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 13244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonze, X.; Rignanese, G.-M.; Verstraete, M.; Beuken, J.-M.; Pouillon, Y.; Caracas, R.; Jollet, F.; Torrent, M.; Zerah, G.; Mikama, M.; et al. A brief introduction to the ABINIT software package. Z. Kristallogr. 2005, 220, 558. [Google Scholar] [CrossRef]
- Gonze, X.; Amadon, B.; Anglade, P.-M.; Beuken, J.-M.; Bottin, F.; Boulanger, P.; Bruneval, F.; Caliste, D.; Caracas, R.; Cote, M.; et al. ABINIT: First-principles approach to material and nanosystem properties. Comput. Phys. Commun. 2009, 180, 2582. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5191. [Google Scholar] [CrossRef]
- Brown, C.J.; Sadanaga, R. The crystal structure of benzil. Acta Cryst. 1965, 18, 158–164. [Google Scholar] [CrossRef] [Green Version]
- Broyden, C.G. The convergence of a class of double-rank minimization algorithms: General considerations. J. Inst. Maths. Appl. 1970, 6, 76. [Google Scholar] [CrossRef] [Green Version]
- More, M.; Odou, G.; Lefebvre, J. Structure determination of benzil in its two phases. Acta Cryst. 1987, 43, 398–405. [Google Scholar] [CrossRef]
- Welberry, T.R.; Goossens, D.J.; David, W.I.F.; Gutmann, M.J.; Bull, M.J.; Heerdegen, A.P. Diffuse neutron scattering in benzil, C14D10O2, using the time-of-flight Laue technique. J. Appl. Cryst. 2003, 36, 1440–1447. [Google Scholar] [CrossRef] [Green Version]
- Ramdas, S.A.S.A.K. Raman spectrum of crystalline benzil. Phys. Rev. 1968, 174, 1069–1075. [Google Scholar]
- Vacher, R.; Boissier, M.; Sapriel, J. Brillouin-scattering investigation of the ferroelastic transition of benzil. Phys. Rev. B 1981, 23, 215–220. [Google Scholar] [CrossRef]
- Benchmann, R. Elastic and piezoelectric constants of alpha-quartz. Phys. Rev. 1958, 110, 1060–1061. [Google Scholar] [CrossRef]
- Born, M.; Huang, K. Dynamical Theory of Crystal Lattices; Oxford University Press: Oxford, UK, 1954. [Google Scholar]
- Mouhat, F.; Coudert, F.-X. Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B 2014, 90, 224104. [Google Scholar] [CrossRef] [Green Version]
- Haussühl, S. Elastische und thermoelastische Konstanten von Benzil C6H5COCOC6H5, gemessen mit dem Schaefer-Bergmann-Verfahren. Acta Cryst. 1967, 23, 666–667. [Google Scholar] [CrossRef]
- Kolev, T.M.; Stamboliyska, B.A. Vibrational spectra and structure of benzil and its 18O- and d10 - labelled derivatives: A quantum chemical and experimental study. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2002, 58, 3127–3137. [Google Scholar] [CrossRef] [PubMed]
- Kanagathara, N.; Senthilkumar, K.; Sabari, V.; Ragavendran, V.; Elangovan, S. Structural and vibrational investigation of benzil-(1,2- diphenylethane-1,2-dione): Experimental and theoretical studies. J. Chem. 2022, 2022, 5968496. [Google Scholar] [CrossRef]
- Claus, R.; Hacker, H.H.; Schrötter, H.W.; Brandmüller, J.; Haussühl, S. Low-freequency optical-phonon spectrum of benzil. Phys. Rev. 1969, 187, 1128–1131. [Google Scholar] [CrossRef]
- Sapriel, J.; Boudou, A.; Perigaud, A. Study of the transition of benzil by simultaneous Raman-scattering and domain-structure investigations. Phys. Rev. B 1979, 19, 1484–1491. [Google Scholar] [CrossRef]
- Goossens, D.J.; Welberry, T.R.; Hagen, M.E.; Fernandez-Baca, J.A. Structural phase transition in deuterated benzil C14D10O2: Neutron inelastic scattering. Phys. Rev. B 2006, 73, 134116. [Google Scholar] [CrossRef] [Green Version]
- Shchur, Y. Phase transitions in TlH2PO4 and TlD2PO4 crystals: Lattice dynamical treatment. J. Phys. Condens. Matter 2010, 22, 315902. [Google Scholar] [CrossRef]
- Shchur, Y.; Kityk, A.V. Ordered PbHPO4 nanowires: Crystal structure, energy bands and optical properties from first principles. Computation. Mater. Sci. 2017, 138, 1–9. [Google Scholar] [CrossRef]
- van Troeye, B.; Setten, M.J.v.; Giantomassi, M.; Torrent, M.; Rignanese, G.-M.; Gonze, X. First-principles study of paraelectric and ferroelectric CsH2PO4 including dispersion forces: Stability and related vibrational, dielectric, and elastic properties. Phys. Rev. B 2017, 95, 024112. [Google Scholar] [CrossRef] [Green Version]
- Menchon, R.; Colizzi, G.; Johnston, C.; Torresi, F.; Lasave, J.; Koval, S.; Kohanoff, J.; Migoni, R. Ab initio study of the structure, isotope effects, and vibrational properties in KDP crystals. Phys. Rev. B 2018, 98, 104108. [Google Scholar] [CrossRef] [Green Version]
- Shchur, Y.; Kityk, A.V. Lattice dynamics of LiH2PO4 crystal. Phys. B 2022, 643, 414161. [Google Scholar] [CrossRef]
- Galeener, F.L.; Geissberger, A.E. Vibrational dynamics in 30Si-substituted vitreous SiO2. Phys. Rev. B 1983, 27, 6199–6204. [Google Scholar] [CrossRef]
Calculation | Experiment | |
---|---|---|
C | 16.66 | 11.23 |
C | 12.89 | 8.56 |
C | 0.46 | 1.15 |
C | 4.67 | 2.88 |
C | 7.31 | 5.47 |
C | 3.86 | 3.35 |
C | −1.02 | −0.61 |
e | 76.1 | 120.5 |
e | −26.9 | −8.0 |
A | A | E | ||||
---|---|---|---|---|---|---|
Calcul. | Raman | Calcul. | Calcul. | Raman | Calcul. | Raman |
27.6 | 30 * | acoust. | acoust. | 992.0 | 988 | |
41.1 | 39 * | 21.2 | 11.0 | 16 * | 993.4 | 1000 |
73.6 | 69 * | 41.5 | 39.2 | 39 * | 1009.7 | |
81.9 | 66.4 | 45.6 | 1011.6 | |||
148.2 | 79.0 | 63.8 | 58 * | 1017.9 | ||
158.7 | 158 | 134.7 | 76.9 | 78 * | 1022.8 | 1021 |
268.5 | 271 | 162.2 | 79.9 | 1042.4 | 1049 | |
318.5 | 267.9 | 82.7 | 1084.7 | |||
394.0 | 398 | 393.2 | 92.9 | 1088.9 | ||
422.5 | 420.3 | 133.3 | 139 | 1160.6 | ||
422.5 | 424 | 457.3 | 147.1 | 1163.2 | ||
609.9 | 610.5 | 153.2 | 1165.5 | 1167 | ||
687.1 | 687 | 637.0 | 161.6 | 167 | 1174.7 | 1178 |
697.8 | 702 | 683.9 | 264.7 | 1212.7 | 1213 | |
721.5 | 725 | 715.5 | 268.4 | 271 | 1288.1 | |
796.5 | 797 | 786.6 | 322.7 | 336 | 1304.9 | |
838.8 | 841.4 | 395.8 | 399 | 1314.7 | ||
950.8 | 868.4 | 399.3 | 1358.1 | 1338 | ||
978.4 | 950.4 | 419.7 | 1360.2 | |||
993.1 | 988 | 975.3 | 423.4 | 1442.0 | ||
1010.7 | 992.5 | 456.6 | 462 | 1445.0 | 1452 | |
1017.2 | 1021 | 1009.4 | 465.6 | 473 | 1476.3 | |
1042.0 | 1049 | 1023.8 | 610.3 | 1478.6 | 1493 | |
1088.7 | 1086.2 | 611.3 | 616 | 1568.7 | ||
1165.5 | 1167 | 1150.8 | 637.0 | 644 | 1569.4 | |
1170.0 | 1164.6 | 681.8 | 1585.6 | 1581 | ||
1285.7 | 1292 | 1211.7 | 686.7 | 686 | 1587.6 | |
1316.4 | 1329 | 1306.9 | 693.9 | 1633.0 | ||
1359.4 | 1351 | 1359.8 | 715.7 | 1642.3 | 1676 | |
1444.4 | 1440.5 | 721.6 | 725 | 3107.4 | 3055 | |
1478.5 | 1476.1 | 795.6 | 3107.5 | 3065 | ||
1569.0 | 1569.1 | 797.8 | 798 | 3114.7 | ||
1588.4 | 1595 | 1589.6 | 843.8 | 845 | 3115.2 | |
1628.3 | 1669 | 1635.0 | 847.9 | 3121.6 | ||
3108.0 | 3107.4 | 872.5 | 880 | 3121.8 | ||
3114.1 | 3114.6 | 940.6 | 3130.5 | |||
3121.6 | 3122.1 | 944.1 | 3130.7 | |||
3130.5 | 3129.9 | 979.2 | 3133.6 | 3161 | ||
3134.6 | 3161 | 3133.6 | 982.2 | 3134.0 | 3190 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shchur, Y.; Bendak, A.; Beltramo, G.; Andrushchak, A.S.; Vitusevich, S.; Pustovyj, D.; Sahraoui, B.; Slyvka, Y.; Kityk, A.V. Nanoarhitectonics of Inorganic–Organic Silica–Benzil Composites: Synthesis, Nanocrystal Morphology and Micro-Raman Analysis. Nanomaterials 2023, 13, 1913. https://doi.org/10.3390/nano13131913
Shchur Y, Bendak A, Beltramo G, Andrushchak AS, Vitusevich S, Pustovyj D, Sahraoui B, Slyvka Y, Kityk AV. Nanoarhitectonics of Inorganic–Organic Silica–Benzil Composites: Synthesis, Nanocrystal Morphology and Micro-Raman Analysis. Nanomaterials. 2023; 13(13):1913. https://doi.org/10.3390/nano13131913
Chicago/Turabian StyleShchur, Yaroslav, Andrii Bendak, Guillermo Beltramo, Anatoliy S. Andrushchak, Svetlana Vitusevich, Denys Pustovyj, Bouchta Sahraoui, Yurii Slyvka, and Andriy V. Kityk. 2023. "Nanoarhitectonics of Inorganic–Organic Silica–Benzil Composites: Synthesis, Nanocrystal Morphology and Micro-Raman Analysis" Nanomaterials 13, no. 13: 1913. https://doi.org/10.3390/nano13131913
APA StyleShchur, Y., Bendak, A., Beltramo, G., Andrushchak, A. S., Vitusevich, S., Pustovyj, D., Sahraoui, B., Slyvka, Y., & Kityk, A. V. (2023). Nanoarhitectonics of Inorganic–Organic Silica–Benzil Composites: Synthesis, Nanocrystal Morphology and Micro-Raman Analysis. Nanomaterials, 13(13), 1913. https://doi.org/10.3390/nano13131913