Nanoarhitectonics of Inorganic–Organic Silica–Benzil Composites: Synthesis, Nanocrystal Morphology and Micro-Raman Analysis
Abstract
1. Introduction
2. Experimental Section
3. Results and Discussion
3.1. Symmetry Considerations
3.2. Ab Initio Calculations
3.3. Raman Scattering
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Vasileiadi, T.; Noual, A.; Wang, Y.; Graczykowski, B.; Djafari-Rouhani, B.; Yang, S.; Fytas, G. Optomechanical hot-spots in metallic nanorod–polymer nanocomposites. ACS Nano 2022, 16, 20419–20429. [Google Scholar] [CrossRef]
- Wan, S.; Xi, X.; Zhang, H.; Ning, J.; Zheng, Z.; Zhang, Z.; Long, Y.; Deng, Y.; Fan, D.; Yang, P.; et al. Shape-mediated oriented assembly of concave nanoparticles under cylindrical confinement. ACS Nano 2022, 16, 21315–21323. [Google Scholar] [CrossRef] [PubMed]
- Kinloch, I.A.; Suhr, J.; Lou, J.; Young, J.; Ajayan, P.M. Composites with carbon nanotubes and graphene: An outlook. Science 2018, 362, 547–553. [Google Scholar] [CrossRef]
- Papageorgiou, D.G.; Li, Z.; Liu, M.; Kinloch, I.A.; Young, R.J. Mechanisms of mechanical reinforcement by graphene and carbon nanotubes in polymer nanocomposites. Nanoscale 2020, 12, 2228–2267. [Google Scholar] [CrossRef]
- Shchur, Y.; Pavlyuk, O.; Andrushchak, A.S.; Vitusevich, S.; Kityk, A.V. Porous Si partially filled with water molecules - crystal structure, energy bands and optical properties from first principles. Nanomaterials 2020, 10, 396. [Google Scholar] [CrossRef]
- Papadopoulou, E.L.; Basnett, P.; Paul, U.C.; Marras, S.; Ceseracciu, L.; Roy, I.; Athanassiou, A. Green composites of poly(3-hydroxybutyrate) containing graphene nanoplatelets with desirable electrical conductivity and oxygen barrier properties. ACS Omega 2019, 4, 19746–19755. [Google Scholar] [CrossRef] [PubMed]
- Bach-Toledo, L.; Hryniewicz, B.M.; Marchesi, L.F.; Dall’Antonia, L.H.; Vidotti, M.; Wolfart, F. Conducting polymers and composites nanowires for energy devices: A brief reviews. Mater. Sci. Energy Technol. 2020, 3, 78–90. [Google Scholar] [CrossRef]
- Chen, S.; Li, Q.; Tian, D.; Ke, P.; Yang, X.; Wu, Q.; Chen, J.; Hu, C.; Ji, H. Assembly of long silver nanowires into highly aligned structure to achieve uniform “Hot Spots” for Surface-enhanced Raman scattering detection. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 273, 121030. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Chen, J.; Wang, J.; Li, X.; Zeng, H. Micro-patterned photoalignment of CsPbBr3 nanowires with liquid crystal molecule composite film for polarized emission. Nanoscale 2021, 13, 14980–14986. [Google Scholar] [CrossRef]
- Tamayo, L.; Palza, H.; Bejarano, J.; Zapata, P.A. Polymer composites with metal nanoparticles: Synthesis, properties, and applications. In Polymer Composites with Functionalized Nanoparticles, Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Khan, M.A.; Ghanim, R.W.; Kiser, M.R.; Moradipour, M.; Rogers, D.T.; Littleton, J.M.; Bradley, L.H.; Lynn, B.C.; Rankin, S.E.; Knutson, B.L. Strategy for conjugating oligopeptides to mesoporous silica nanoparticles using diazirine-based heterobifunctional linkers. Nanomaterials 2022, 12, 608. [Google Scholar] [CrossRef]
- Jamshidi, R.G.M. Synthesis of vinyl-based silica nanoparticles by sol–gel method and their influences on network microstructure and dynamic mechanical properties of nitrile rubber nanocomposites. Sci. Rep. 2022, 12, 15286. [Google Scholar]
- Yang, F.; Cui, H.; Wu, X.; Kim, S.; Hong, G. Ultrasound-activated luminescence with color tunability enabled by mechanoluminescent colloids and perovskite quantum dots. Nanoscale 2023, 15, 1629–1636. [Google Scholar] [CrossRef]
- Shchur, Y.; Kityk, A.V.; Strelchuk, V.V.; Nikolenko, A.S.; Andrushchak, N.A.; Huber, P.; Andrushchak, A.S. Paraelectric KH2PO4 nanocrystals in monolithic mesoporous silica: Structure and lattice dynamics. J. Alloys Compd. 2021, 868, 159177. [Google Scholar] [CrossRef]
- Shchur, Y.; Beltramo, G.; Andrushchak, A.S.; Vitusevich, S.; Huber, P.; Adamiv, V.T.; Teslyuk, I.; Boichuk, N.; Kityk, A.V. On the issue of textured crystallization of Ba(NO3)2 in mesoporous SiO2: Raman spectroscopy and lattice dynamics fnalysis. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 275, 121157. [Google Scholar] [CrossRef]
- Somseemee, O.; Saeoui, P.; Schevenels, F.T.; Siriwong, C. Enhanced interfacial interaction between modified cellulose nanocrystals and epoxidized natural rubber via ultraviolet irradiation. Sci. Rep. 2022, 12, 6682. [Google Scholar] [CrossRef]
- Karout, H.E.; Shchur, Y.; Andrushchak, A.; Sahraoui, B.; Wielgosz, R.; Kityk, O.; Jedryka, J.; Slyvka, Y.; Kityk, A.V. Second harmonic generation on crystalline nanoclusters in functionalized silica-benzil composites: Effect of extreme nanoconfinement on conversion efficiency. Sci. Rep. 2023, 13, 9943. [Google Scholar] [CrossRef]
- Thelen, M.; Bochud, N.; Brinker, M.; Prada, C.; Huber, P. Laser-excited elastic guided waves reveal the complex mechanics of nanoporous silicon. Nat. Commun. 2021, 12, 3597. [Google Scholar] [CrossRef] [PubMed]
- Patterson, A.L. The Scherrer formula for X-ray particle size determination. Phys. Rev. 1939, 56, 978–982. [Google Scholar] [CrossRef]
- Wang, J.P.P.Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244. [Google Scholar]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 13244. [Google Scholar] [CrossRef] [PubMed]
- Gonze, X.; Rignanese, G.-M.; Verstraete, M.; Beuken, J.-M.; Pouillon, Y.; Caracas, R.; Jollet, F.; Torrent, M.; Zerah, G.; Mikama, M.; et al. A brief introduction to the ABINIT software package. Z. Kristallogr. 2005, 220, 558. [Google Scholar] [CrossRef]
- Gonze, X.; Amadon, B.; Anglade, P.-M.; Beuken, J.-M.; Bottin, F.; Boulanger, P.; Bruneval, F.; Caliste, D.; Caracas, R.; Cote, M.; et al. ABINIT: First-principles approach to material and nanosystem properties. Comput. Phys. Commun. 2009, 180, 2582. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5191. [Google Scholar] [CrossRef]
- Brown, C.J.; Sadanaga, R. The crystal structure of benzil. Acta Cryst. 1965, 18, 158–164. [Google Scholar] [CrossRef]
- Broyden, C.G. The convergence of a class of double-rank minimization algorithms: General considerations. J. Inst. Maths. Appl. 1970, 6, 76. [Google Scholar] [CrossRef]
- More, M.; Odou, G.; Lefebvre, J. Structure determination of benzil in its two phases. Acta Cryst. 1987, 43, 398–405. [Google Scholar] [CrossRef]
- Welberry, T.R.; Goossens, D.J.; David, W.I.F.; Gutmann, M.J.; Bull, M.J.; Heerdegen, A.P. Diffuse neutron scattering in benzil, C14D10O2, using the time-of-flight Laue technique. J. Appl. Cryst. 2003, 36, 1440–1447. [Google Scholar] [CrossRef]
- Ramdas, S.A.S.A.K. Raman spectrum of crystalline benzil. Phys. Rev. 1968, 174, 1069–1075. [Google Scholar]
- Vacher, R.; Boissier, M.; Sapriel, J. Brillouin-scattering investigation of the ferroelastic transition of benzil. Phys. Rev. B 1981, 23, 215–220. [Google Scholar] [CrossRef]
- Benchmann, R. Elastic and piezoelectric constants of alpha-quartz. Phys. Rev. 1958, 110, 1060–1061. [Google Scholar] [CrossRef]
- Born, M.; Huang, K. Dynamical Theory of Crystal Lattices; Oxford University Press: Oxford, UK, 1954. [Google Scholar]
- Mouhat, F.; Coudert, F.-X. Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B 2014, 90, 224104. [Google Scholar] [CrossRef]
- Haussühl, S. Elastische und thermoelastische Konstanten von Benzil C6H5COCOC6H5, gemessen mit dem Schaefer-Bergmann-Verfahren. Acta Cryst. 1967, 23, 666–667. [Google Scholar] [CrossRef]
- Kolev, T.M.; Stamboliyska, B.A. Vibrational spectra and structure of benzil and its 18O- and d10 - labelled derivatives: A quantum chemical and experimental study. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2002, 58, 3127–3137. [Google Scholar] [CrossRef] [PubMed]
- Kanagathara, N.; Senthilkumar, K.; Sabari, V.; Ragavendran, V.; Elangovan, S. Structural and vibrational investigation of benzil-(1,2- diphenylethane-1,2-dione): Experimental and theoretical studies. J. Chem. 2022, 2022, 5968496. [Google Scholar] [CrossRef]
- Claus, R.; Hacker, H.H.; Schrötter, H.W.; Brandmüller, J.; Haussühl, S. Low-freequency optical-phonon spectrum of benzil. Phys. Rev. 1969, 187, 1128–1131. [Google Scholar] [CrossRef]
- Sapriel, J.; Boudou, A.; Perigaud, A. Study of the transition of benzil by simultaneous Raman-scattering and domain-structure investigations. Phys. Rev. B 1979, 19, 1484–1491. [Google Scholar] [CrossRef]
- Goossens, D.J.; Welberry, T.R.; Hagen, M.E.; Fernandez-Baca, J.A. Structural phase transition in deuterated benzil C14D10O2: Neutron inelastic scattering. Phys. Rev. B 2006, 73, 134116. [Google Scholar] [CrossRef]
- Shchur, Y. Phase transitions in TlH2PO4 and TlD2PO4 crystals: Lattice dynamical treatment. J. Phys. Condens. Matter 2010, 22, 315902. [Google Scholar] [CrossRef]
- Shchur, Y.; Kityk, A.V. Ordered PbHPO4 nanowires: Crystal structure, energy bands and optical properties from first principles. Computation. Mater. Sci. 2017, 138, 1–9. [Google Scholar] [CrossRef]
- van Troeye, B.; Setten, M.J.v.; Giantomassi, M.; Torrent, M.; Rignanese, G.-M.; Gonze, X. First-principles study of paraelectric and ferroelectric CsH2PO4 including dispersion forces: Stability and related vibrational, dielectric, and elastic properties. Phys. Rev. B 2017, 95, 024112. [Google Scholar] [CrossRef]
- Menchon, R.; Colizzi, G.; Johnston, C.; Torresi, F.; Lasave, J.; Koval, S.; Kohanoff, J.; Migoni, R. Ab initio study of the structure, isotope effects, and vibrational properties in KDP crystals. Phys. Rev. B 2018, 98, 104108. [Google Scholar] [CrossRef]
- Shchur, Y.; Kityk, A.V. Lattice dynamics of LiH2PO4 crystal. Phys. B 2022, 643, 414161. [Google Scholar] [CrossRef]
- Galeener, F.L.; Geissberger, A.E. Vibrational dynamics in 30Si-substituted vitreous SiO2. Phys. Rev. B 1983, 27, 6199–6204. [Google Scholar] [CrossRef]
Calculation | Experiment | |
---|---|---|
C | 16.66 | 11.23 |
C | 12.89 | 8.56 |
C | 0.46 | 1.15 |
C | 4.67 | 2.88 |
C | 7.31 | 5.47 |
C | 3.86 | 3.35 |
C | −1.02 | −0.61 |
e | 76.1 | 120.5 |
e | −26.9 | −8.0 |
A | A | E | ||||
---|---|---|---|---|---|---|
Calcul. | Raman | Calcul. | Calcul. | Raman | Calcul. | Raman |
27.6 | 30 * | acoust. | acoust. | 992.0 | 988 | |
41.1 | 39 * | 21.2 | 11.0 | 16 * | 993.4 | 1000 |
73.6 | 69 * | 41.5 | 39.2 | 39 * | 1009.7 | |
81.9 | 66.4 | 45.6 | 1011.6 | |||
148.2 | 79.0 | 63.8 | 58 * | 1017.9 | ||
158.7 | 158 | 134.7 | 76.9 | 78 * | 1022.8 | 1021 |
268.5 | 271 | 162.2 | 79.9 | 1042.4 | 1049 | |
318.5 | 267.9 | 82.7 | 1084.7 | |||
394.0 | 398 | 393.2 | 92.9 | 1088.9 | ||
422.5 | 420.3 | 133.3 | 139 | 1160.6 | ||
422.5 | 424 | 457.3 | 147.1 | 1163.2 | ||
609.9 | 610.5 | 153.2 | 1165.5 | 1167 | ||
687.1 | 687 | 637.0 | 161.6 | 167 | 1174.7 | 1178 |
697.8 | 702 | 683.9 | 264.7 | 1212.7 | 1213 | |
721.5 | 725 | 715.5 | 268.4 | 271 | 1288.1 | |
796.5 | 797 | 786.6 | 322.7 | 336 | 1304.9 | |
838.8 | 841.4 | 395.8 | 399 | 1314.7 | ||
950.8 | 868.4 | 399.3 | 1358.1 | 1338 | ||
978.4 | 950.4 | 419.7 | 1360.2 | |||
993.1 | 988 | 975.3 | 423.4 | 1442.0 | ||
1010.7 | 992.5 | 456.6 | 462 | 1445.0 | 1452 | |
1017.2 | 1021 | 1009.4 | 465.6 | 473 | 1476.3 | |
1042.0 | 1049 | 1023.8 | 610.3 | 1478.6 | 1493 | |
1088.7 | 1086.2 | 611.3 | 616 | 1568.7 | ||
1165.5 | 1167 | 1150.8 | 637.0 | 644 | 1569.4 | |
1170.0 | 1164.6 | 681.8 | 1585.6 | 1581 | ||
1285.7 | 1292 | 1211.7 | 686.7 | 686 | 1587.6 | |
1316.4 | 1329 | 1306.9 | 693.9 | 1633.0 | ||
1359.4 | 1351 | 1359.8 | 715.7 | 1642.3 | 1676 | |
1444.4 | 1440.5 | 721.6 | 725 | 3107.4 | 3055 | |
1478.5 | 1476.1 | 795.6 | 3107.5 | 3065 | ||
1569.0 | 1569.1 | 797.8 | 798 | 3114.7 | ||
1588.4 | 1595 | 1589.6 | 843.8 | 845 | 3115.2 | |
1628.3 | 1669 | 1635.0 | 847.9 | 3121.6 | ||
3108.0 | 3107.4 | 872.5 | 880 | 3121.8 | ||
3114.1 | 3114.6 | 940.6 | 3130.5 | |||
3121.6 | 3122.1 | 944.1 | 3130.7 | |||
3130.5 | 3129.9 | 979.2 | 3133.6 | 3161 | ||
3134.6 | 3161 | 3133.6 | 982.2 | 3134.0 | 3190 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shchur, Y.; Bendak, A.; Beltramo, G.; Andrushchak, A.S.; Vitusevich, S.; Pustovyj, D.; Sahraoui, B.; Slyvka, Y.; Kityk, A.V. Nanoarhitectonics of Inorganic–Organic Silica–Benzil Composites: Synthesis, Nanocrystal Morphology and Micro-Raman Analysis. Nanomaterials 2023, 13, 1913. https://doi.org/10.3390/nano13131913
Shchur Y, Bendak A, Beltramo G, Andrushchak AS, Vitusevich S, Pustovyj D, Sahraoui B, Slyvka Y, Kityk AV. Nanoarhitectonics of Inorganic–Organic Silica–Benzil Composites: Synthesis, Nanocrystal Morphology and Micro-Raman Analysis. Nanomaterials. 2023; 13(13):1913. https://doi.org/10.3390/nano13131913
Chicago/Turabian StyleShchur, Yaroslav, Andrii Bendak, Guillermo Beltramo, Anatoliy S. Andrushchak, Svetlana Vitusevich, Denys Pustovyj, Bouchta Sahraoui, Yurii Slyvka, and Andriy V. Kityk. 2023. "Nanoarhitectonics of Inorganic–Organic Silica–Benzil Composites: Synthesis, Nanocrystal Morphology and Micro-Raman Analysis" Nanomaterials 13, no. 13: 1913. https://doi.org/10.3390/nano13131913
APA StyleShchur, Y., Bendak, A., Beltramo, G., Andrushchak, A. S., Vitusevich, S., Pustovyj, D., Sahraoui, B., Slyvka, Y., & Kityk, A. V. (2023). Nanoarhitectonics of Inorganic–Organic Silica–Benzil Composites: Synthesis, Nanocrystal Morphology and Micro-Raman Analysis. Nanomaterials, 13(13), 1913. https://doi.org/10.3390/nano13131913