Photo-Excited Metasurface for Tunable Terahertz Reflective Circular Polarization Conversion and Anomalous Beam Deflection at Two Frequencies Independently
Abstract
1. Introduction
2. Structure Design and Simulations
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yao, J.Q.; Li, J.; Zhang, Y.T.; Ding, X.; Wu, L. Terahertz wave modulation technology: Harnessing the light of terahertz. Nat. Mag. 2023, 45, 1–16. [Google Scholar]
- Fan, S.; He, Y.; Ung, B.S.; Pickwell-MacPherson, E. The growth of biomedical terahertz research. J. Phys. D Appl. Phys. 2014, 47, 374009. [Google Scholar] [CrossRef]
- Oh, S.J.; Kim, S.-H.; Jeong, K.; Park, Y.; Huh, Y.M.; Son, J.H.; Suh, J.S. Measurement depth enhancement in terahertz imaging of biological tissues. Opt. Express 2013, 21, 21299–21305. [Google Scholar] [CrossRef] [PubMed]
- Arbab, M.H.; Winebrenner, D.P.; Dickey, T.C.; Chen, A.; Klein, M.B.; Mourad, P.D. Terahertz spectroscopy for the assessment of burn injuries in vivo. J. Biomed. Opt. 2013, 18, 077004. [Google Scholar] [CrossRef]
- Shi, S.C.; Paine, S.; Yao, Q.J.; Lin, Z.H.; Li, X.X.; Duan, W.Y.; Matsuo, H.; Zhang, Q.; Yang, J.; Ashley, M.C.B.; et al. Terahertz and far-infrared windows opened at Dome A in Antarctica. Nat. Astron. 2017, 1, 0001. [Google Scholar] [CrossRef]
- Rappaport, T.S.; Xing, Y.C.; Kanhere, O.; Ju, S.; Madanayake, A.; Mandal, S.; Alkhateeb, A.; Trichopoulos, G.C. Wireless communications and applications above 100 GHz: Opportunities and challenges for 6G and beyond. IEEE Access 2019, 7, 78729–78757. [Google Scholar] [CrossRef]
- Pinaud, M.; Humbert, G.; Engelbrecht, S.; Merlat, L.; Fischer, B.M.; Crunteanu, A. Terahertz Devices Using the Optical Activation of Gete Phase Change Materials: Toward Fully Reconfigurable Functionalities. ACS Photonics 2021, 8, 3272–3281. [Google Scholar] [CrossRef]
- Fu, X.J.; Yang, F.; Liu, C.X.; Wu, X.; Cui, T.J. Terahertz Beam Steering Technologies: From Phased Arrays to Field-Programmable Metasurfaces. Adv. Opt. Mater. 2020, 8, 1900628. [Google Scholar] [CrossRef]
- Koch, M. Terahertz Technology: A Land to Be Discovered. Opt. Photonics News 2007, 18, 20–25. [Google Scholar] [CrossRef]
- Pendry, J.B.; Holden, A.J.; Stewart, W.J.; Youngs, I. Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 1996, 76, 4773–4776. [Google Scholar] [CrossRef]
- Pendry, J.B.; Holden, A.J.; Robbins, D.J.; Stewart, W.J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 1999, 47, 2075–2084. [Google Scholar] [CrossRef]
- Smith, D.R.; Padilla, W.J.; Vier, D.C.; Nemat-Nasser, S.C.; Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 2000, 84, 4184–4187. [Google Scholar] [CrossRef]
- Soukoulis, C.M.; Wegener, M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photonics 2011, 5, 523–530. [Google Scholar] [CrossRef]
- Shalaev, V.M. Optica lnegative-index metamaterials. Nat. Photonics 2007, 1, 41–48. [Google Scholar] [CrossRef]
- Shelby, R.A.; Smith, D.R.; Nemat Nasser, S.C.; Schultz, S. Microwave transmission through a two-dimensional, isotropic, left-handed metamaterials. Appl. Phys. Lett. 2001, 78, 489–491. [Google Scholar] [CrossRef]
- Pendry, J.B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 2000, 85, 3966–3969. [Google Scholar] [CrossRef]
- Fang, N.; Lee, H.; Sun, C.; Zhang, X. Sub-diffraction-limited optical imaging with a silver superlens. Science 2005, 308, 534–537. [Google Scholar] [CrossRef] [PubMed]
- Pendry, J.B. Controlling electromagnetic fields. Science 2006, 312, 1780–1782. [Google Scholar] [CrossRef] [PubMed]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect metamaterial absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.M.; Yuan, Y.; Ran, L.X.; Jiang, T.; Kong, J.A.; Chan, C.T.; Zhou, L. Manipulating electromagnetic wave polarizations by anisotropic metamaterials. Phys. Rev. Lett. 2007, 99, 063908. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.J.; He, Q.; Hao, J.M.; Zhou, L. A transparent metamaterial to manipulate electromagnetic wave polarizations. Opt. Lett. 2011, 36, 927–929. [Google Scholar] [CrossRef]
- Burckel, D.B.; Wendt, J.R.; Eyck, G.A.T.; Ginn, J.C.; Ellis, A.R.; Brener, I.; Sinclair, M.B. Micrometer-Scale Cubic Unit Cell 3D Metamaterial Layers. Adv. Mater. 2010, 22, 4916. [Google Scholar] [CrossRef]
- Yu, N.F.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.P.; Capasso, F.; Gaburro, Z. Light Propagation with Phase Discontinuities Reflection and Refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Glybovski, S.B.; Tretyakov, S.A.; Belov, P.A.; Kivshar, Y.S.; Simovski, C.R. Metasurfaces: From microwaves to visible. Phys. Rep. 2016, 634, 1–72. [Google Scholar] [CrossRef]
- Paul, O.; Reinhard, B.; Krolla, B.; Beigang, R.; Rahm, M. Gradient index metamaterial based on slot elements. Appl. Phys. Lett. 2010, 96, 241110. [Google Scholar] [CrossRef]
- Yang, D.R.; Cheng, Y.Z.; Chen, F.; Luo, H.; Wu, L. Efficiency tunable broadband terahertz graphene metasurface for circular polarization anomalous reflection and plane focusing effect. Diam. Relat. Mater. 2023, 131, 109605. [Google Scholar] [CrossRef]
- Cheng, Y.Z.; Qian, Y.J.; Luo, H.; Chen, F.; Cheng, Z.Z. Terahertz narrowband perfect metasurface absorber based on micro-ring-shaped GaAs array for enhanced refractive index sensing. Phys. E 2023, 146, 115527. [Google Scholar] [CrossRef]
- Li, Z.R.; Cheng, Y.Z.; Luo, H.; Chen, F.; Li, X.C. Dual-band tunable terahertz perfect absorber based on all-dielectric InSb resonator structure for sensing application. J. Alloys Compd. 2022, 925, 166617. [Google Scholar] [CrossRef]
- Zhu, X.Z.; Cheng, Y.Z.; Chen, F.; Luo, H.; Wu, L. Efficiency adjustable terahertz circular polarization anomalous refraction and planar focusing based on a bi-layered complementary Z-shaped graphene metasurface. Opt. Soc. Am. B 2022, 39, 705–712. [Google Scholar] [CrossRef]
- Chen, X.; Zou, H.; Su, M.; Tang, L.; Wang, C.; Chen, S.; Su, C.; Li, Y. All-Dielectric Metasurface-Based Beam Splitter with Arbitrary Splitting Ratio. Nanomaterials 2021, 11, 1137. [Google Scholar] [CrossRef]
- Fan, J.P.; Cheng, Y.Z.; He, B. High-Efficiency ultrathin terahertz geometric metasurface for full-space wavefront manipulation at two frequencies. Phys. D Appl. Phys. 2021, 54, 115101. [Google Scholar] [CrossRef]
- Li, J.; Cheng, Y.Z.; Li, X.C. Terahertz transmission-type metasurface for the linear and circular polarization wavefront manipulation. Adv. Theory Simul. 2022, 5, 127932. [Google Scholar] [CrossRef]
- Zhao, R.Q.; Zhu, Z.; Dong, G.H.; Lv, T.T.; Li, Y.X.; Guan, C.Y.; Shi, J.H.; Zhang, H. High-efficiency Huygens’ metasurface for terahertz wave manipulation. Opt. Lett. 2019, 44, 3482–3485. [Google Scholar] [CrossRef]
- Cheng, Y.Z.; Yu, J.W.; Li, X.C. Tri-band high-efficiency circular polarization convertor based on double-split-ring resonator structures. Appl. Phys. B 2022, 128, 1. [Google Scholar] [CrossRef]
- Liu, M.K.; Yang, Q.L.; Rifat, A.A.; Raj, V.; Komar, A.; Han, J.G.; Rahmani, M.; Hattori, T.H.; Neshev, D.; Powell, D.A.; et al. Deeply Subwavelength Metasurface Resonators for Terahertz Wavefront Manipulation. Adv. Opt. Mater. 2019, 7, 1900736. [Google Scholar] [CrossRef]
- You, X.; Fumeaux, C.; Withayachumnankul, W. Tutorial on broadband transmissive metasurfaces for wavefront and polarization control of terahertz waves. J. Appl. Phys. 2022, 131, 061101. [Google Scholar] [CrossRef]
- Jia, R.D.; Gao, Y.F.; Xu, Q.; Feng, X.; Wang, Q.W.; Gu, J.Q.; Tian, Z.; Ouyang, C.; Han, J.G.; Zhang, W.L. Achromatic Dielectric Metasurface with Linear Phase Gradient in the Terahertz Domain. Adv. Opt. Mater. 2021, 9, 2001403. [Google Scholar] [CrossRef]
- You, X.; Ako, R.T.; Lees, W.S.-L.; Bhaskaran, M.; Sriram, S.; Fumeaux, C.; Withayachumnankul, W. Terahertz transmissive half-wave metasurface with enhanced bandwidth. Opt. Lett. 2021, 46, 4164–4167. [Google Scholar] [CrossRef] [PubMed]
- Kan, T.; Isozaki, A.; Kanda, N.; Nemoto, N.; Konishi, K.; Takahashi, H.; Kuwata-Gonokami, M.; Matsumoto, K.; Shimoyama, I. Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals. Nat. Commun. 2015, 6, 8422. [Google Scholar] [CrossRef] [PubMed]
- Konishi, K.; Kan, T.; Kuwata-Gonokami, M. Tunable and nonlinear metamaterials for controlling circular polarization. J. Appl. Phys. 2020, 127, 230902. [Google Scholar] [CrossRef]
- You, X.; Ako, R.T.; Bhaskaran, M.; Sriram, S.; Fumeaux, C.; Withayachumnankul, W. Mechanically tunable terahertz circular polarizer with versatile functions. Laser Photonics Rev. 2023, 17, 22000305. [Google Scholar] [CrossRef]
- Wu, T.S.; Liu, Z.H.; Wang, Y.P.; Zhang, H.X.; Yang, Z.N.; Cao, W.P.; Yang, D. All-Dielectric Phase-Gradient Metasurface Performing High-Efciency Anomalous Transmission in the Near-Infrared Region. Nanoscale Res. Lett. 2021, 16, 158. [Google Scholar] [CrossRef]
- Cheng, Y.Z.; Yang, D.R.; Li, X.C. Broadband reflective dual-functional polarization convertor based on all-metal metasurface in visible region. Phys. B Condens. Matter 2022, 640, 414047. [Google Scholar] [CrossRef]
- Shanei, M.M.; Fathi, D.; Ghasemifard, F.; Quevedo-Teruel, O. All-silicon reconfigurable metasurfaces for multifunction and tunable performance at optical frequencies based on glide symmetry. Sci. Rep. 2019, 9, 13641. [Google Scholar] [CrossRef] [PubMed]
- Su, X.Q.; Ouyang, C.; Xu, N.; Cao, W.; Wei, X.; Song, G.; Gu, J.; Tian, Z.; O’Hara, J.F.; Han, J.; et al. Active metasurface terahertz deflector with phase discontinuities. Opt. Express 2015, 23, 27152–27158. [Google Scholar] [CrossRef] [PubMed]
- Ha, Y.L.; Guo, Y.H.; Pu, M.B.; Li, X.; Ma, X.L.; Luo, X.G. A tunable metasurface deflector based on MIM waveguide Filled with Phase-Change Material. Plasmonics 2019, 14, 1735–1741. [Google Scholar] [CrossRef]
- Kim, S. Broadband phase-change metagrating design for efficient active reflection steering. Curr. Opt. Photonics 2021, 5, 134–140. [Google Scholar]
- Yu, F.L.; Zhao, Z.Y.; Chen, J.; Wang, J.; Jin, R.; Chen, J.; Wang, J.; Li, G.; Chen, X.; Lu, W. Reconfigurable metasurface with tunable and achromatic beam deflections. Opt. Mater. Express 2021, 12, 49–58. [Google Scholar] [CrossRef]
- Seren, H.R.; Keiser, G.R.; Cao, L.; Zhang, J.; Strikwerda, A.C.; Fan, K.; Metcalfe, G.D.; Wraback, M.; Zhang, X.; Averitt, R.D. Optically modulated multiband terahertz perfect absorber. Adv. Opt. Mater. 2014, 2, 1221–1226. [Google Scholar] [CrossRef]
- Cheng, Y.Z.; Gong, R.Z.; Zhao, J.C. A photoexcited switchable perfect metamaterial absorber/reflector with polarization-independent and wide-angle for terahertz waves. Opt. Mater. 2016, 62, 28–33. [Google Scholar] [CrossRef]
- Liu, X.W.; Liu, H.J.; Sun, Q.B.; Huang, N. Metamaterial terahertz switch based on split-ring resonator embedded with photoconductive Silicon. Appl. Opt. 2015, 54, 3478–3483. [Google Scholar] [CrossRef]
- Bing, P.B.; Guo, X.Y.; Wang, H.; Li, Z.Y.; Yao, J.Q. Characteristic analysis of a photoexcited tunable metamaterial absorber for terahertz waves. J. Opt. 2019, 48, 179–183. [Google Scholar] [CrossRef]
- Zhao, J.C.; Cheng, Y.Z.; Cheng, Z.Z. Design of a photo-excited switchable broadband reflective linear polarization conversion metasurface for terahertz waves. IEEE Photonics J. 2018, 10, 4600210. [Google Scholar] [CrossRef]
- Song, Z.Y.; Wang, Z.S.; Wei, M.L. Broadband tunable absorber for terahertz waves based on isotropic silicon metasurfaces. Mater. Lett. 2019, 234, 138–141. [Google Scholar] [CrossRef]
- Zhao, X.G.; Wang, Y.; Schalch, J.; Duan, G.W.; Cremin, K.; Zhang, J.D.; Chen, C.X.; Averitt, R.D.; Zhang, X. Optically Modulated Ultra-Broadband All Silicon Metamaterial Terahertz Absorbers. ACS Photonics 2019, 6, 830–837. [Google Scholar] [CrossRef]
- Wang, Y.; Yue, L.S.; Cui, Z.J.; Zhang, X.J.; Zhang, X.; Zhu, Y.Q.; Zhang, K. Optically tunable single narrow band all-dielectric terahertz metamaterials absorber. AIP Adv. 2020, 10, 045039. [Google Scholar] [CrossRef]
- Cheng, Y.Z.; Liu, J.Q.; Chen, F.; Luo, H.; Li, X.C. Optically switchable broadband metasurface absorber based on square ring shaped photoconductive silicon for terahertz waves. Phys. Lett. A 2021, 402, 127345. [Google Scholar] [CrossRef]
- Kanda, N.; Konishi, K.; Kuwata-Gonokami, M. All-photoinduced terahertz optical activity. Opt. Lett. 2014, 39, 3274–3277. [Google Scholar] [CrossRef]
- Kanda, N.; Konishi, K.; Kuwata-Gonokami, M. Dynamics of photo-induced terahertz optical activity in metal chiral gratings. Opt. Lett. 2012, 37, 3510–3512. [Google Scholar] [CrossRef]
- Li, N.; Zhao, J.; Tang, P.; Cheng, Y. Design of all-metal 3D anisotropic metamaterial for ultrabroadband terahertz reflective linear polarization conversion. Phys. Status Solidi B 2023, 5, 2300104. [Google Scholar] [CrossRef]
- Zhao, J.; Li, N.; Cheng, Y. All-dielectric InSb metasurface for broadband and high-efficient thermal tunable terahertz reflective linear-polarization conversion. Opt. Commun. 2023, 536, 129372. [Google Scholar]
- Li, N.; Zhao, J.; Tang, P.; Cheng, Y. Broadband and high-efficient reflective linear-circular polarization convertor based on three-dimensional all-metal anisotropic metamaterial at terahertz frequencies. Opt. Commun. 2023, 538, 129544. [Google Scholar] [CrossRef]
- Yang, D.R.; Cheng, Y.Z.; Luo, H.; Chen, F.; Wu, L. Ultra-thin and ultra-broadband terahertz single-layer metasurface based on double-arrow-shaped resonator structure for full-space wavefront manipulation. Adv. Theory Simul. 2023, 15, 312. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Ni, C.; Cheng, Y.; Dong, L.; Wu, L. Photo-Excited Metasurface for Tunable Terahertz Reflective Circular Polarization Conversion and Anomalous Beam Deflection at Two Frequencies Independently. Nanomaterials 2023, 13, 1846. https://doi.org/10.3390/nano13121846
Xu Z, Ni C, Cheng Y, Dong L, Wu L. Photo-Excited Metasurface for Tunable Terahertz Reflective Circular Polarization Conversion and Anomalous Beam Deflection at Two Frequencies Independently. Nanomaterials. 2023; 13(12):1846. https://doi.org/10.3390/nano13121846
Chicago/Turabian StyleXu, Zhixiang, Cheng Ni, Yongzhi Cheng, Linhui Dong, and Ling Wu. 2023. "Photo-Excited Metasurface for Tunable Terahertz Reflective Circular Polarization Conversion and Anomalous Beam Deflection at Two Frequencies Independently" Nanomaterials 13, no. 12: 1846. https://doi.org/10.3390/nano13121846
APA StyleXu, Z., Ni, C., Cheng, Y., Dong, L., & Wu, L. (2023). Photo-Excited Metasurface for Tunable Terahertz Reflective Circular Polarization Conversion and Anomalous Beam Deflection at Two Frequencies Independently. Nanomaterials, 13(12), 1846. https://doi.org/10.3390/nano13121846