Role of Dibenzo Crown Additive for Improving the Stability of Inorganic Perovskite Solar Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. SnO2 thin Films Preparation
2.3. Perovskite Film Fabrication
2.4. Carbon Electrode Preparation
2.5. Characterizations
3. Results and Discussion
3.1. Crystal Growth and Morphological Analysis
3.2. Compositional Moleculer Interaction Analysis
3.3. Functional Groups Analysis
3.4. Transformation of δ into α-Phase of CsPbI2Br
3.5. Detailed PV & IV Characteristics Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, S.; Wen, J.; Liu, Z.; Che, Y.; Xu, J.; Wang, J.; Xu, D.; Yuan, N.; Ding, J.; Duan, Y.; et al. A Key 2D Intermediate Phase for Stable High-Efficiency CsPbI2Br Perovskite Solar Cells. Adv. Energy Mater. 2022, 12, 2103019. [Google Scholar] [CrossRef]
- Min, X.; Xie, Q.; Wang, X.; Chen, M. Enhancing the stability of cesium lead iodide perovskite nanocrystals: Recent progress, challenges and opportunities. Surf. Interfaces 2021, 22, 100870. [Google Scholar] [CrossRef]
- Huang, J.; Wang, H.; Chen, C.; Frank, L.S. Enhancement of CsPbI3 perovskite solar cells with dual functional passivator 4-Fluoro-3-phenoxybenzaldehyde. Surf. Interfaces 2022, 35, 102477. [Google Scholar] [CrossRef]
- Xie, P.; Zhang, G.; Yang, Z.; Pan, Z.; Fang, Y.; Rao, H.; Zhong, X. Perovskite-Compatible Carbon Electrode Improving the Efficiency and Stability of CsPbI2Br Solar Cells. Sol. RRL 2020, 4, 2000431. [Google Scholar] [CrossRef]
- Su, T.-S.; Eickemeyer, F.; Hope, M.; Jahanbakhshi, F.; Mladenovic, M.; Li, J.; Zhou, Z.; Mishra, A.; Yum, J.-H.; Ren, D.; et al. Crown ether modulation enables over 23% efficient formamidinium-based perovskite solar cells. J. Am. Chem. Soc. 2020, 142, 19980–19991. [Google Scholar] [CrossRef] [PubMed]
- Kaewprajak, A.; Kumnorkaew, P.; Lohawet, K.; Duong, B.; Chonsut, T.; Kayunkid, N.; Saranrom, N.; Promarak, V. An unconventional blade coating for low-cost fabrication of PCDTBT: PC70BM polymer and CH3NH3PbIxCl3−x perovskite solar cells. Surf. Interfaces 2021, 23, 100969. [Google Scholar] [CrossRef]
- Qaid, S.M.H.; Ghaithan, H.M.; Al-Asbahi, B.A.; Aldwayyan, A.S. Investigation of the Surface Passivation Effect on the Optical Properties of CsPbBr3 Perovskite Quantum Dots. Surf. Interfaces 2021, 23, 100948. [Google Scholar] [CrossRef]
- Ran, C.; Chen, Y.; Gao, W.; Wang, M.; Dai, L. One-dimensional (1D)[6,6]-phenyl-C 61-butyric acid methyl ester (PCBM) nanorods as an efficient additive for improving the efficiency and stability of perovskite solar cells. J. Mater. Chem. A 2016, 4, 8566–8572. [Google Scholar] [CrossRef]
- Khalifa, S.; Spatari, S.; Fafarman, A.; Baxter, J. Environmental sustainability of mixed cation perovskite materials in photovoltaics manufacturing. ACS Sustain. Chem. Eng. 2020, 8, 16537–16548. [Google Scholar]
- Deepa, M.; Salado, M.; Calio, L.; Kazim, S.; Shivaprasad, S.; Ahmad, S. Cesium power: Low Cs+ levels impart stability to perovskite solar cells. Phys. Chem. Chem. Phys. 2017, 19, 4069–4077. [Google Scholar] [CrossRef]
- Eze, V.; Carani, L.; Majumder, H.; Uddin, M.; Okoli, O. Inorganic cesium lead mixed halide based perovskite solar materials modified with functional silver iodide. Sci. Rep. 2022, 12, 7794. [Google Scholar] [CrossRef] [PubMed]
- Kausar, A.; Sattar, A.; Xu, C.; Zhang, S.; Kang, Z.; Zhang, Y. Advent of alkali metal doping: A roadmap for the evolution of perovskite solar cells. Chem. Soc. Rev. 2021, 50, 2696–2736. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Wong, K.; Yang, S.; Chen, T. Crystallinity and defect state engineering in organo-lead halide perovskite for high-efficiency solar cells. J. Mater. Chem. A 2016, 4, 3806–3812. [Google Scholar] [CrossRef]
- Ahn, N.; Son, D.-Y.; Jang, I.-H.; Kang, S.; Choi, M.; Park, N.-G. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead (II) iodide. J. Am. Chem. Soc. 2015, 137, 8696–8699. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Yuan, X.; Feng, Y.; Larson, B.; Su, G.; Maung, Y.M.; Rujisamphan, N.; Li, Y.; Yuan, J.; Ma, W. Understanding the Interplay of Transport-Morphology-Performance in PBDB-T-Based Polymer Solar Cells. Sol. RRL 2020, 4, 1900524. [Google Scholar] [CrossRef]
- Yang, J.; Xiong, S.; Qu, T.; Zhang, Y.; He, X.; Guo, X.; Zhao, Q.; Braun, S.; Chen, J.; Xu, J.; et al. Extremely low-cost and green cellulose passivating perovskites for stable and high-performance solar cells. ACS Appl. Mater. Interfaces 2019, 11, 13491–13498. [Google Scholar] [CrossRef] [PubMed]
- Paul, P.; Yadav, M.; Obot, I. Potential of dibenzo-18-crown-6-ether derivatives as a corrosion inhibitor on mild steel in HCl medium: Electrochemical and computational approaches. New J. Chem. 2021, 45, 6826–6842. [Google Scholar] [CrossRef]
- Sahu, P.; Ali, S.; Singh, J. Structural and dynamical properties of Li+-dibenzo-18-crown-6 (DB18C6) complex in pure solvents and at the aqueous-organic interface. J. Mol. Model. 2014, 20, 2413. [Google Scholar] [CrossRef]
- Yousefi, S.; Kiasat, A. MCM-41 bound dibenzo-18-crown-6 ether: A recoverable phase-transfer nano catalyst for smooth and regioselective conversion of oxiranes to β-azidohydrins and β-cyanohydrins in water. RSC Adv. 2015, 5, 92387–92393. [Google Scholar] [CrossRef]
- Korsunsky, I.; Millard, N.; Fan, J.; Slowikowski, K.; Zhang, F.; Wei, K.; Baglaenko, Y.; Brenner, M.; Loh, P.; Raychaudhuri, S. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 2019, 16, 1289–1296. [Google Scholar] [CrossRef]
- Ferdowsi, P.; Steiner, U.; Milić, J. Host-guest complexation in hybrid perovskite optoelectronics. J. Phys. Mater. 2021, 4, 42011. [Google Scholar] [CrossRef]
- Duan, C.; Cui, J.; Zhang, M.; Han, Y.; Yang, S.; Zhao, H.; Bian, H.; Yao, J.; Zhao, K.; Liu, Z.; et al. Precursor engineering for ambient-compatible antisolvent-free fabrication of high-efficiency CsPbI2Br perovskite solar cells. Adv. Energy Mater. 2020, 10, 2000691. [Google Scholar] [CrossRef]
- Liang, J.; Chen, C.; Hu, X.; Xiao, M.; Wang, C.; Yao, F.; Li, J.; Wang, H.; He, J.; Da, B.; et al. Revealing the Mechanism of π Aromatic Molecule as an Effective Passivator and Stabilizer in Highly Efficient Wide-Bandgap Perovskite Solar Cells. Sol. RRL 2021, 5, 2100249. [Google Scholar] [CrossRef]
- Wang, W.; Yuan, J.; Shi, G.; Zhu, X.; Shi, S.; Liu, Z.; Han, L.; Wang, H.-Q.; Ma, W. Inverted planar heterojunction perovskite solar cells employing polymer as the electron conductor. ACS Appl. Mater. Interfaces 2015, 7, 3994–3999. [Google Scholar] [CrossRef] [PubMed]
- Saleem, M.; Ahmad, M.; Fang, L.; Raza, R.; Akhtar, M.; Rehman, S. Solution-derived ZnO nanoflowers based photoelectrodes for dye-sensitized solar cells. Mater. Res. Bull. 2017, 96, 211–217. [Google Scholar] [CrossRef]
- Lee, C.-C.; Iskandar, J.; Kurniawan, A.; Hsu, H.-P.; Wu, Y.-F.; Cheng, H.-M.; Liu, S.-W. Modulation of the carrier balance of lead-halide perovskite nanocrystals by polyelectrolyte hole transport layers for near-infrared light-emitting diodes. Heliyon 2022, 8, e10504. [Google Scholar] [CrossRef]
- Ren, Y.; Ren, M.; Xie, X.; Wang, J.; Cai, Y.; Yuan, Y.; Zhang, J.; Wang, P. A spiro-OMeTAD based semiconductor composite with over 100 °C glass transition temperature for durable perovskite solar cells. Nano Energy 2021, 81, 105655. [Google Scholar] [CrossRef]
- Juha, L.; Fárn, M.; Hamplová, V.; Kodymová, J.; Müllerová, A.; Krása, J.; Láska, L.; Špalek, O.; Kubát, P.; Stibor, L.; et al. The role of the oxygen molecule in the photolysis of fullerenes. Fuller. Sci. Technol. 2000, 8, 289–318. [Google Scholar] [CrossRef]
- Tian, J.; Lv, L.; Fei, C.; Wang, Y.; Liu, X.; Cao, G. A highly efficient (> 6%) Cd1−xMnx Se quantum dot sensitized solar cell. J. Mater. Chem. A 2014, 2, 19653–19659. [Google Scholar] [CrossRef]
- Tao, Q.; Zhu, Z.; Ye, S.; Lin, G.; Chen, H.; Tu, Y.; Bai, G.; Zhang, L.; Yang, X. Surface Polymerization and Controlled Pyrolysis: Tailorable Synthesis of Bumpy Hollow Carbon Spheres for Energy Storage. Langmuir 2021, 37, 4007–4015. [Google Scholar] [CrossRef]
- Jiang, C.; Dong, Q.; Zhang, C.; Feng, Y.; Zhao, W.; Ma, H.; Jin, S.; Shi, Y. Ozone-Mediated Controllable Hydrolysis for a High-Quality Amorphous NbO x Electron Transport Layer in Efficient Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2020, 12, 15194–15201. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, F.; Zhang, M.; Yang, Z. Recent Progress on Boosting the Perovskite Film Quality of All-Inorganic Perovskite Solar Cells. Coatings 2023, 13, 281. [Google Scholar] [CrossRef]
DC% | Jsc (mA/cm2) | Voc (V) | FF | PCE (%) |
---|---|---|---|---|
0% | 13.27 | 1.14 | 0.64 | 9.76 |
0.1% | 14.05 | 1.14 | 0.64 | 10.49 |
0.3% | 14.01 | 1.19 | 0.70 | 11.57 |
0.5% | 12.99 | 1.13 | 0.61 | 9.06 |
Film | Jsc (mA/cm2) | Voc (V) | FF | PCE (%) |
---|---|---|---|---|
0% DC-reverse | 14.15 | 1.03 | 0.60 | 8.75 |
0% DC-forward | 14.13 | 1.02 | 0.48 | 6.96 |
0.3% DC-reverse | 14.17 | 1.13 | 0.67 | 10.75 |
0.3% DC-forward | 14.18 | 1.10 | 0.65 | 10.16 |
Additive | Device Configuration | Preparation Temperature (°C) | JSC (mA cm−2) | VOC (V) | FF | PCE (%) |
---|---|---|---|---|---|---|
B site Sr2+ | FTO/c-TiO2/m-TiO2/CsPb0.98Sr0.02I2Br/P3HT/Au | 310 | 15.3 | 1.043 | 0.699 | 11.2 |
B site Cd2+ | FTO/TiO2/CsPbIBr2-Cd2+/Carbon | 160 | 11.53 | 1.324 | 0.696 | 10.63 |
B site Gd3+ | FTO/TiO2/CsPbI2Br0.96 (GdCl3)0.04/Spiro-OMeTAD/Au | 160 | 16.09 | 1.222 | 0.825 | 16.24 |
HI | FTO/c-TiO2/CsPbI3(γ)/P3HT/Au | 100 | 16.53 | 1.04 | 0.657 | 11.3 |
HPbI3 | FTO/c-TiO2/m-TiO2/CsPbI3(α)/Carbon | 200 | 18.5 | 0.79 | 0.65 | 9.5 |
HPbI3 | FTO/c-TiO2/CsPbI3/Spiro-OMeTAD/Au | 180 | 18.4 | 1.054 | 0.74 | 14.3 |
DMAI | FTO/PEDOT:PSS/CsPbI3/(C60/BCP)/Ag | 100 | 16.65 | 0.99 | 0.765 | 12.62 |
HEMA | FTO/ZnO/CsPbI2Br/PM6/MoO3/Ag | 160 | 15.81 | 1.23 | 0.83 | 16.13 |
MACl | FTO/c-TiO2/CsPbI3/spiro-OMeTAD/Au | 100 | 20.59 | 1.198 | 0.825 | 20.37 |
GuaSCN | FTO/c-TiO2/CsPbIBr2/Spiro-OMeTAD/Au | 280 | 12.05 | 1.23 | 0.737 | 10.9 |
DC (this work) | FTO/SnO2/CsPbI2Br/Carbon | 130 | 14.01 | 1.19 | 0.70 | 11.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, M.; Xu, X.; Zhang, L.; Lu, F.; Xing, C.; Wang, D.; Zhang, T. Role of Dibenzo Crown Additive for Improving the Stability of Inorganic Perovskite Solar Cells. Nanomaterials 2023, 13, 1751. https://doi.org/10.3390/nano13111751
He M, Xu X, Zhang L, Lu F, Xing C, Wang D, Zhang T. Role of Dibenzo Crown Additive for Improving the Stability of Inorganic Perovskite Solar Cells. Nanomaterials. 2023; 13(11):1751. https://doi.org/10.3390/nano13111751
Chicago/Turabian StyleHe, Miao, Xinyu Xu, Le Zhang, Fei Lu, Chuwu Xing, Duofa Wang, and Tianjin Zhang. 2023. "Role of Dibenzo Crown Additive for Improving the Stability of Inorganic Perovskite Solar Cells" Nanomaterials 13, no. 11: 1751. https://doi.org/10.3390/nano13111751
APA StyleHe, M., Xu, X., Zhang, L., Lu, F., Xing, C., Wang, D., & Zhang, T. (2023). Role of Dibenzo Crown Additive for Improving the Stability of Inorganic Perovskite Solar Cells. Nanomaterials, 13(11), 1751. https://doi.org/10.3390/nano13111751