Conversion of Charge Carrier Polarity in MoTe2 Field Effect Transistor via Laser Doping
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Geim, A.K.; Grigorieva, I.V. Van Der Waals Heterostructures. Nature 2013, 499, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712. [Google Scholar] [CrossRef]
- Lee, I.; Rathi, S.; Lim, D.; Li, L.; Park, J.; Lee, Y.; Yi, K.S.; Dhakal, K.P.; Kim, J.; Lee, C.; et al. Gate-Tunable Hole and Electron Carrier Transport in Atomically Thin Dual-Channel WSe2/MoS2Heterostructure for Ambipolar Field-Effect Transistors. Adv. Mater. 2016, 28, 9519–9525. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.A.; Oh, H.M.; Duong, N.T.; Bang, S.; Yoon, S.J.; Jeong, M.S. Highly Enhanced Photoresponsivity of a Monolayer WSe2 Photodetector with Nitrogen-Doped Graphene Quantum Dots. ACS Appl. Mater. Interfaces 2018, 10, 10322–10329. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Zhang, L.; Wei, S.H. A Unified Understanding of the Thickness-Dependent Bandgap Transition in Hexagonal Two-Dimensional Semiconductors. J. Phys. Chem. Lett. 2016, 7, 597–602. [Google Scholar] [CrossRef]
- Fogler, M.M.; Butov, L.V.; Novoselov, K.S. High-Temperature Superfluidity with Indirect Excitons in van Der Waals Heterostructures. Nat. Commun. 2014, 5, 4555. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.F.; Xu, Y.; Lin, C.Y.; Suen, Y.W.; Yamamoto, M.; Nakaharai, S.; Ueno, K.; Tsukagoshi, K. Origin of Noise in Layered MoTe2 Transistors and Its Possible Use for Environmental Sensors. Adv. Mater. 2015, 27, 6612–6619. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.Y.; Pezeshki, A.; Oh, S.; Kim, J.S.; Lee, Y.T.; Yu, S.; Hwang, D.K.; Lee, G.H.; Choi, H.J.; Im, S. Homogeneous 2D MoTe2 p–n Junctions and CMOS Inverters Formed by Atomic-Layer-Deposition-Induced Doping. Adv. Mater. 2017, 29, 1701798. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Patil, S.A.; Vikraman, D.; Mengal, N.; Liu, H.; Song, W.; An, K.S.; Jeong, S.H.; Kim, H.S.; Jung, J. Large Area Growth of MoTe2 Films as High Performance Counter Electrodes for Dye-Sensitized Solar Cells. Sci. Rep. 2018, 8, 29. [Google Scholar] [CrossRef] [PubMed]
- Uddin, I.; Phan, N.A.N.; Le Thi, H.Y.; Kim, H.; Whang, D.; Kim, G.H. MoTe2-Based Schottky Barrier Photodiode Enabled by Contact Engineering. ACS Appl. Nano Mater. 2023, 6, 445–452. [Google Scholar] [CrossRef]
- Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497–501. [Google Scholar] [CrossRef]
- Wei, X.; Yan, F.; Lv, Q.; Zhu, W.; Hu, C.; Patanè, A.; Wang, K. Enhanced Photoresponse in MoTe2 Photodetectors with Asymmetric Graphene Contacts. Adv. Opt. Mater. 2019, 7, 1900190. [Google Scholar] [CrossRef]
- Lezama, I.G.; Arora, A.; Ubaldini, A.; Barreteau, C.; Giannini, E.; Potemski, M.; Morpurgo, A.F. Indirect-to-Direct Band Gap Crossover in Few-Layer MoTe2. Nano Lett. 2015, 15, 2336–2342. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Luo, W.; Wu, N.; Zhang, X.A.; Qin, S. Engineering few-layer MoTe2 devices by Co/hBN tunnel contacts. Appl. Phys. Lett. 2018, 112, 183102. [Google Scholar] [CrossRef]
- Duerloo, K.A.N.; Li, Y.; Reed, E.J. Structural phase transitions in two-dimensional Mo-and W-dichalcogenide Monolayers. Nat. Commun. 2014, 5, 4214. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Kim, S.W.; Chhowalla, M.; Lee, Y.H. Structural and quantum-state phase transition in van Der Waals layered materials. Nat. Phys. 2017, 13, 931–937. [Google Scholar] [CrossRef]
- Deng, Y.; Zhao, X.; Zhu, C.; Li, P.; Duan, R.; Liu, G.; Liu, Z. MoTe2: Semiconductor or Semimetal? ACS Nano 2021, 15, 12465–12474. [Google Scholar] [CrossRef]
- Nakaharai, S.; Yamamoto, M.; Ueno, K.; Tsukagoshi, K. Carrier Polarity Control in α-MoTe2 Schottky Junctions Based on Weak Fermi-Level Pinning. ACS Appl. Mater. Interfaces 2016, 8, 14732–14739. [Google Scholar] [CrossRef]
- Wu, E.; Xie, Y.; Zhang, J.; Zhang, H.; Hu, X.; Liu, J.; Zhou, C.; Zhang, D. Dynamically controllable polarity modulation of MoTe2 field-effect transistors through ultraviolet light and electrostatic activation. Sci. Adv. 2019, 5, eaav3430. [Google Scholar] [CrossRef]
- Seo, S.G.; Jeong, J.; Kim, S.Y.; Kumar, A.; Jin, S.H. Reversible and controllable Threshold Voltage Modulation for n-Channel MoS2 and p-Channel MoTe2 field-effect transistors via multiple counter doping with ODTS/Poly-L-Lysine charge enhancers. Nano Res. 2021, 14, 3214–3227. [Google Scholar] [CrossRef]
- Kang, S.; Won, D.; Yang, H.; Lin, C.H.; Ku, C.S.; Chiang, C.Y.; Kim, S.; Cho, S. Phase-controllable laser thinning in MoTe2. Appl. Surf. Sci. 2021, 563, 150282. [Google Scholar] [CrossRef]
- Duong, N.T.; Lee, J.; Bang, S.; Park, C.; Lim, S.C.; Jeong, M.S. Modulating the Functions of MoS2/MoTe2 van der Waals Heterostructure via Thickness Variation. ACS Nano 2019, 13, 4478–4485. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Islam, A.; Guo, J.; Feng, P.X.L. Controlling Polarity of MoTe2 Transistors for Monolithic Complementary Logic via Schottky Contact Engineering. ACS Nano 2020, 14, 1457–1467. [Google Scholar] [CrossRef]
- Zakhidov, D.; Rehn, D.A.; Reed, E.J.; Salleo, A. Reversible Electrochemical Phase Change in Monolayer to Bulk-like MoTe2 by Ionic Liquid Gating. ACS Nano 2020, 14, 2894–2903. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Qu, D.; Yuan, Y.; Sun, J.; Yoo, W.J. Self-Terminated Surface Monolayer Oxidation Induced Robust Degenerate Doping in MoTe2 for Low Contact Resistance. ACS Appl. Mater. Interfaces 2020, 12, 26586–26592. [Google Scholar] [CrossRef]
- Chen, X.; Chen, H.; Sun, Y.; Zhang, S.; Xia, Y.; Zhang, D.W.; Zhou, P. Scalable production of p-MoTe2/n-MoS2 heterostructure array and its application for self-powered photodetectors and CMOS inverters. 2D Mater. 2022, 9, 035015. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, J.; Wang, Q.; Wan, J.; Liu, R. Homogeneous 2D MoTe2 CMOS Inverters and p–n Junctions Formed by Laser-Irradiation-Induced p-Type Doping. Small 2020, 16, 2001428. [Google Scholar] [CrossRef]
- Lee, C.; Rathi, S.; Khan, M.A.; Lim, D.; Kim, Y.; Yun, S.J.; Youn, D.H.; Watanabe, K.; Taniguchi, T.; Kim, G.H. Comparison of trapped charges and hysteresis behavior in hBN Encapsulated Single MoS2 flake based field effect transistors on SiO2 and hBN Substrates. Nanotechnology 2018, 29, 335202. [Google Scholar] [CrossRef]
- Rehman, S.; Khan, M.F.; Rahmani, M.K.; Kim, H.; Patil, H.; Khan, S.A.; Kang, M.H.; Kim, D.K. Neuro-Transistor Based on UV-Treated Charge Trapping in MoTe2 for Artificial Synaptic Features. Nanomaterials 2020, 10, 2326. [Google Scholar] [CrossRef]
- Ruppert, C.; Aslan, O.B.; Heinz, T.F. Optical Properties and Band Gap of Single- and Few-Layer MoTe2 Crystals. Nano Lett. 2014, 14, 6231–6236. [Google Scholar] [CrossRef]
- Chuang, S.; Battaglia, C.; Azcatl, A.; McDonnell, S.; Kang, J.S.; Yin, X.; Tosun, M.; Kapadia, R.; Fang, H.; Wallace, R.M.; et al. MoS2 P-Type Transistors and Diodes Enabled by High Work Function MoOx Contacts. Nano Lett. 2014, 14, 1337–1342. [Google Scholar] [CrossRef] [PubMed]
- Ke, Y.; Song, X.; Qi, D.; Liu, J.; Hao, Q.; Wang, Z.; Tang, S.; Zhang, W. Modulation of Electrical Properties with Controllable Local Doping in Multilayer MoTe2 Transistors. Adv. Electron. Mater. 2020, 6, 2000532. [Google Scholar] [CrossRef]
- Pradhan, N.R.; Rhodes, D.; Feng, S.; Xin, Y.; Memaran, S.; Moon, B.; Terrones, H.; Terrones, M.; Balicas, L. Field-Effect Transistors Based on Few-Layered α-MoTe2. ACS Nano 2014, 8, 5911–5920. [Google Scholar] [CrossRef] [PubMed]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Uddin, I.; Watanabe, K.; Taniguchi, T.; Whang, D.; Kim, G.-H. Conversion of Charge Carrier Polarity in MoTe2 Field Effect Transistor via Laser Doping. Nanomaterials 2023, 13, 1700. https://doi.org/10.3390/nano13101700
Kim H, Uddin I, Watanabe K, Taniguchi T, Whang D, Kim G-H. Conversion of Charge Carrier Polarity in MoTe2 Field Effect Transistor via Laser Doping. Nanomaterials. 2023; 13(10):1700. https://doi.org/10.3390/nano13101700
Chicago/Turabian StyleKim, Hanul, Inayat Uddin, Kenji Watanabe, Takashi Taniguchi, Dongmok Whang, and Gil-Ho Kim. 2023. "Conversion of Charge Carrier Polarity in MoTe2 Field Effect Transistor via Laser Doping" Nanomaterials 13, no. 10: 1700. https://doi.org/10.3390/nano13101700
APA StyleKim, H., Uddin, I., Watanabe, K., Taniguchi, T., Whang, D., & Kim, G.-H. (2023). Conversion of Charge Carrier Polarity in MoTe2 Field Effect Transistor via Laser Doping. Nanomaterials, 13(10), 1700. https://doi.org/10.3390/nano13101700

