Conversion of Charge Carrier Polarity in MoTe2 Field Effect Transistor via Laser Doping
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Geim, A.K.; Grigorieva, I.V. Van Der Waals Heterostructures. Nature 2013, 499, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712. [Google Scholar] [CrossRef]
- Lee, I.; Rathi, S.; Lim, D.; Li, L.; Park, J.; Lee, Y.; Yi, K.S.; Dhakal, K.P.; Kim, J.; Lee, C.; et al. Gate-Tunable Hole and Electron Carrier Transport in Atomically Thin Dual-Channel WSe2/MoS2Heterostructure for Ambipolar Field-Effect Transistors. Adv. Mater. 2016, 28, 9519–9525. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.A.; Oh, H.M.; Duong, N.T.; Bang, S.; Yoon, S.J.; Jeong, M.S. Highly Enhanced Photoresponsivity of a Monolayer WSe2 Photodetector with Nitrogen-Doped Graphene Quantum Dots. ACS Appl. Mater. Interfaces 2018, 10, 10322–10329. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Zhang, L.; Wei, S.H. A Unified Understanding of the Thickness-Dependent Bandgap Transition in Hexagonal Two-Dimensional Semiconductors. J. Phys. Chem. Lett. 2016, 7, 597–602. [Google Scholar] [CrossRef]
- Fogler, M.M.; Butov, L.V.; Novoselov, K.S. High-Temperature Superfluidity with Indirect Excitons in van Der Waals Heterostructures. Nat. Commun. 2014, 5, 4555. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.F.; Xu, Y.; Lin, C.Y.; Suen, Y.W.; Yamamoto, M.; Nakaharai, S.; Ueno, K.; Tsukagoshi, K. Origin of Noise in Layered MoTe2 Transistors and Its Possible Use for Environmental Sensors. Adv. Mater. 2015, 27, 6612–6619. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.Y.; Pezeshki, A.; Oh, S.; Kim, J.S.; Lee, Y.T.; Yu, S.; Hwang, D.K.; Lee, G.H.; Choi, H.J.; Im, S. Homogeneous 2D MoTe2 p–n Junctions and CMOS Inverters Formed by Atomic-Layer-Deposition-Induced Doping. Adv. Mater. 2017, 29, 1701798. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Patil, S.A.; Vikraman, D.; Mengal, N.; Liu, H.; Song, W.; An, K.S.; Jeong, S.H.; Kim, H.S.; Jung, J. Large Area Growth of MoTe2 Films as High Performance Counter Electrodes for Dye-Sensitized Solar Cells. Sci. Rep. 2018, 8, 29. [Google Scholar] [CrossRef] [PubMed]
- Uddin, I.; Phan, N.A.N.; Le Thi, H.Y.; Kim, H.; Whang, D.; Kim, G.H. MoTe2-Based Schottky Barrier Photodiode Enabled by Contact Engineering. ACS Appl. Nano Mater. 2023, 6, 445–452. [Google Scholar] [CrossRef]
- Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497–501. [Google Scholar] [CrossRef]
- Wei, X.; Yan, F.; Lv, Q.; Zhu, W.; Hu, C.; Patanè, A.; Wang, K. Enhanced Photoresponse in MoTe2 Photodetectors with Asymmetric Graphene Contacts. Adv. Opt. Mater. 2019, 7, 1900190. [Google Scholar] [CrossRef]
- Lezama, I.G.; Arora, A.; Ubaldini, A.; Barreteau, C.; Giannini, E.; Potemski, M.; Morpurgo, A.F. Indirect-to-Direct Band Gap Crossover in Few-Layer MoTe2. Nano Lett. 2015, 15, 2336–2342. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Luo, W.; Wu, N.; Zhang, X.A.; Qin, S. Engineering few-layer MoTe2 devices by Co/hBN tunnel contacts. Appl. Phys. Lett. 2018, 112, 183102. [Google Scholar] [CrossRef]
- Duerloo, K.A.N.; Li, Y.; Reed, E.J. Structural phase transitions in two-dimensional Mo-and W-dichalcogenide Monolayers. Nat. Commun. 2014, 5, 4214. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Kim, S.W.; Chhowalla, M.; Lee, Y.H. Structural and quantum-state phase transition in van Der Waals layered materials. Nat. Phys. 2017, 13, 931–937. [Google Scholar] [CrossRef]
- Deng, Y.; Zhao, X.; Zhu, C.; Li, P.; Duan, R.; Liu, G.; Liu, Z. MoTe2: Semiconductor or Semimetal? ACS Nano 2021, 15, 12465–12474. [Google Scholar] [CrossRef]
- Nakaharai, S.; Yamamoto, M.; Ueno, K.; Tsukagoshi, K. Carrier Polarity Control in α-MoTe2 Schottky Junctions Based on Weak Fermi-Level Pinning. ACS Appl. Mater. Interfaces 2016, 8, 14732–14739. [Google Scholar] [CrossRef]
- Wu, E.; Xie, Y.; Zhang, J.; Zhang, H.; Hu, X.; Liu, J.; Zhou, C.; Zhang, D. Dynamically controllable polarity modulation of MoTe2 field-effect transistors through ultraviolet light and electrostatic activation. Sci. Adv. 2019, 5, eaav3430. [Google Scholar] [CrossRef]
- Seo, S.G.; Jeong, J.; Kim, S.Y.; Kumar, A.; Jin, S.H. Reversible and controllable Threshold Voltage Modulation for n-Channel MoS2 and p-Channel MoTe2 field-effect transistors via multiple counter doping with ODTS/Poly-L-Lysine charge enhancers. Nano Res. 2021, 14, 3214–3227. [Google Scholar] [CrossRef]
- Kang, S.; Won, D.; Yang, H.; Lin, C.H.; Ku, C.S.; Chiang, C.Y.; Kim, S.; Cho, S. Phase-controllable laser thinning in MoTe2. Appl. Surf. Sci. 2021, 563, 150282. [Google Scholar] [CrossRef]
- Duong, N.T.; Lee, J.; Bang, S.; Park, C.; Lim, S.C.; Jeong, M.S. Modulating the Functions of MoS2/MoTe2 van der Waals Heterostructure via Thickness Variation. ACS Nano 2019, 13, 4478–4485. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Islam, A.; Guo, J.; Feng, P.X.L. Controlling Polarity of MoTe2 Transistors for Monolithic Complementary Logic via Schottky Contact Engineering. ACS Nano 2020, 14, 1457–1467. [Google Scholar] [CrossRef]
- Zakhidov, D.; Rehn, D.A.; Reed, E.J.; Salleo, A. Reversible Electrochemical Phase Change in Monolayer to Bulk-like MoTe2 by Ionic Liquid Gating. ACS Nano 2020, 14, 2894–2903. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Qu, D.; Yuan, Y.; Sun, J.; Yoo, W.J. Self-Terminated Surface Monolayer Oxidation Induced Robust Degenerate Doping in MoTe2 for Low Contact Resistance. ACS Appl. Mater. Interfaces 2020, 12, 26586–26592. [Google Scholar] [CrossRef]
- Chen, X.; Chen, H.; Sun, Y.; Zhang, S.; Xia, Y.; Zhang, D.W.; Zhou, P. Scalable production of p-MoTe2/n-MoS2 heterostructure array and its application for self-powered photodetectors and CMOS inverters. 2D Mater. 2022, 9, 035015. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, J.; Wang, Q.; Wan, J.; Liu, R. Homogeneous 2D MoTe2 CMOS Inverters and p–n Junctions Formed by Laser-Irradiation-Induced p-Type Doping. Small 2020, 16, 2001428. [Google Scholar] [CrossRef]
- Lee, C.; Rathi, S.; Khan, M.A.; Lim, D.; Kim, Y.; Yun, S.J.; Youn, D.H.; Watanabe, K.; Taniguchi, T.; Kim, G.H. Comparison of trapped charges and hysteresis behavior in hBN Encapsulated Single MoS2 flake based field effect transistors on SiO2 and hBN Substrates. Nanotechnology 2018, 29, 335202. [Google Scholar] [CrossRef]
- Rehman, S.; Khan, M.F.; Rahmani, M.K.; Kim, H.; Patil, H.; Khan, S.A.; Kang, M.H.; Kim, D.K. Neuro-Transistor Based on UV-Treated Charge Trapping in MoTe2 for Artificial Synaptic Features. Nanomaterials 2020, 10, 2326. [Google Scholar] [CrossRef]
- Ruppert, C.; Aslan, O.B.; Heinz, T.F. Optical Properties and Band Gap of Single- and Few-Layer MoTe2 Crystals. Nano Lett. 2014, 14, 6231–6236. [Google Scholar] [CrossRef]
- Chuang, S.; Battaglia, C.; Azcatl, A.; McDonnell, S.; Kang, J.S.; Yin, X.; Tosun, M.; Kapadia, R.; Fang, H.; Wallace, R.M.; et al. MoS2 P-Type Transistors and Diodes Enabled by High Work Function MoOx Contacts. Nano Lett. 2014, 14, 1337–1342. [Google Scholar] [CrossRef] [PubMed]
- Ke, Y.; Song, X.; Qi, D.; Liu, J.; Hao, Q.; Wang, Z.; Tang, S.; Zhang, W. Modulation of Electrical Properties with Controllable Local Doping in Multilayer MoTe2 Transistors. Adv. Electron. Mater. 2020, 6, 2000532. [Google Scholar] [CrossRef]
- Pradhan, N.R.; Rhodes, D.; Feng, S.; Xin, Y.; Memaran, S.; Moon, B.; Terrones, H.; Terrones, M.; Balicas, L. Field-Effect Transistors Based on Few-Layered α-MoTe2. ACS Nano 2014, 8, 5911–5920. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Uddin, I.; Watanabe, K.; Taniguchi, T.; Whang, D.; Kim, G.-H. Conversion of Charge Carrier Polarity in MoTe2 Field Effect Transistor via Laser Doping. Nanomaterials 2023, 13, 1700. https://doi.org/10.3390/nano13101700
Kim H, Uddin I, Watanabe K, Taniguchi T, Whang D, Kim G-H. Conversion of Charge Carrier Polarity in MoTe2 Field Effect Transistor via Laser Doping. Nanomaterials. 2023; 13(10):1700. https://doi.org/10.3390/nano13101700
Chicago/Turabian StyleKim, Hanul, Inayat Uddin, Kenji Watanabe, Takashi Taniguchi, Dongmok Whang, and Gil-Ho Kim. 2023. "Conversion of Charge Carrier Polarity in MoTe2 Field Effect Transistor via Laser Doping" Nanomaterials 13, no. 10: 1700. https://doi.org/10.3390/nano13101700
APA StyleKim, H., Uddin, I., Watanabe, K., Taniguchi, T., Whang, D., & Kim, G.-H. (2023). Conversion of Charge Carrier Polarity in MoTe2 Field Effect Transistor via Laser Doping. Nanomaterials, 13(10), 1700. https://doi.org/10.3390/nano13101700