Variation in Metal–Support Interaction with TiO2 Loading and Synthesis Conditions for Pt-Ti/SBA-15 Active Catalysts in Methane Combustion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Catalysts Preparation
2.3. Catalysts Characterization
2.4. Catalytic Activity Measurements
3. Results
3.1. Properties of Titania Modified SBA-15 Supports
3.2. Physicochemical Properties of the Supported Metals Species
3.3. Catalytic Properties of PtTi-SBA-15 Materials in CH4 Oxidation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oseghe, E.O.; Maddila, S.; Ndungu, P.G.; Jonnalagadda, S.B. Effect of surfactant concentration on active species generation and photocatalytic properties of TiO2. Appl. Catal. B 2015, 176–177, 288–297. [Google Scholar] [CrossRef]
- Zhang, X.; Shi, Q.; Liu, X.; Li, J.; Xu, H.; Ding, H.; Li, G. Facile Assembly of InVO4/TiO2 Heterojunction for Enhanced Photo-Oxidation of Benzyl Alcohol. Nanomaterials 2022, 12, 1544. [Google Scholar] [CrossRef] [PubMed]
- Gowrisankaran, S.; Thirunavukkarasu, G.K.; Makarov, T.; Roch, T.; Plesch, G.; Motola, M.; Mailhot, G.; Brigante, M.; Monfort, O. New insights into the mechanism of coupled photocatalysis and Fenton-based processes using Fe surface-modified TiO2 nanotube layers: The case study of caffeine degradation. Catal. Today 2023, 413–415, 114027. [Google Scholar] [CrossRef]
- Rui, Z.; Wu, S.; Peng, C.; Ji, H. Comparison of TiO2 Degussa P25 with anatase and rutile crystalline phases for methane combustion. Chem. Eng. J. 2014, 243, 254. [Google Scholar] [CrossRef]
- Colmenares, J.C.; Magdziarz, A.; Aramendia, M.A.; Marinas, A.; Marinas, J.M.; Urbano, F.J.; Navio, J.A. Influence of the strong metal support interaction effect (SMSI) of Pt/TiO2 and Pd/TiO2 systems in the photocatalytic biohydrogen production from glucose solution. Catal. Commun. 2011, 16, 1–6. [Google Scholar] [CrossRef]
- Li, X.; Zheng, W.; Pan, H.; Yu, Y.; Chen, L.; Wu, P. Pt nanoparticles supported on highly dispersed TiO2 coated on SBA-15 as an efficient and recyclable catalyst for liquid-phase hydrogenation. J. Catal. 2013, 300, 9–19. [Google Scholar] [CrossRef]
- Bertella, F.; Concepción Heydorn, P.; Martinez Feliu, A. The impact of support surface area on the SMSI decoration effect and catalytic performance for Fischer-Tropsch synthesis of Co-Ru/TiO2-anatase catalysts. Catal. Today 2017, 296, 170–180. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, X.; Liu, J.; Xiao, J.; Hu, Z. Si doping influence on the catalytic performance of Pt/TiO2 mesoporous film catalyst for low-temperature methanol combustion. Appl. Surf. Sci. 2014, 309, 144–152. [Google Scholar] [CrossRef]
- Alonso, F.; Riente, P.; Rodríguez-Reinoso, F.; Ruiz-Martínez, J.; Sepúlveda-Escribano, A.; Yus, M. Platinum nanoparticles supported on titania as an efficient hydrogen-transfer catalyst. J. Catal. 2008, 260, 113–118. [Google Scholar] [CrossRef]
- Wang, C.; Li, X.; Liu, Y.-Y.; Wang, A.; Sheng, Q.; Zhang, C.-X. Insight into metal-support interactions from the hydrodesulfurization of dibenzothiophene over Pd catalysts supported on UiO-66 and its aminofunctionalized analogues. J. Catal. 2022, 407, 333–341. [Google Scholar] [CrossRef]
- Hazlett, M.J.; Moses-Debusk, M.; Parks, J.E.; Allard, L.F.; Epling, W.S. Kinetic and mechanistic study of bimetallic Pt-Pd/Al2O3 catalysts for CO and C3H6 oxidation. Appl. Catal. B 2017, 202, 404–417. [Google Scholar] [CrossRef]
- Daneshvar, K.; Dadi, R.K.; Luss, D.; Balakotaiah, V.; Kang, S.B.; Kalamaras, C.M.; Epling, W.S. Experimental and modeling study of CO and hydrocarbons light-off on various Pt-Pd/γ-Al2O3 diesel oxidation catalysts. Chem. Eng. J. 2017, 323, 347–360. [Google Scholar] [CrossRef]
- Peng, R.; Zhang, H.; Guo, Y.; Huang, W.; Zhang, Y.; Wu, J.; Fu, M.; Yu, G.; Ye, D. The lanthanide doping effect on toluene catalytic oxidation over Pt/CeO2 catalyst. J. Colloid Interface Sci. 2022, 614, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Lunagómez Rocha, M.A.; Del Ángel, G.; Torres-Torres, G.; Cervantes, A.; Vázquez, A.; Arrieta, A.; Beltramini, J.N. Effect of the Pt oxidation state and Ce3+/Ce4+ ratio on the Pt/TiO2-CeO2 catalysts in the phenol degradation by catalytic wet air oxidation (CWAO). Catal. Today 2015, 250, 145–154. [Google Scholar] [CrossRef]
- Yurdakal, S.; Tek, B.S.; Değirmenci, Ç.; Palmisano, G. Selective photocatalytic oxidation of aromatic alcohols in solar-irradiated aqueous suspensions of Pt, Au, Pd and Ag loaded TiO2 catalysts. Catal. Today 2017, 281, 53–59. [Google Scholar] [CrossRef]
- Choi, P.G.; Ohno, T.; Masui, T.; Imanaka, N. Catalytic liquid-phase oxidation of acetaldehyde to acetic acid over a Pt/CeO2–ZrO2–SnO2/γ-alumina catalyst. J. Environ. Sci. 2015, 36, 63–66. [Google Scholar] [CrossRef]
- Kumar, S.M.; Chen, D.; Walmsley, J.C.; Holmen, A. Dehydrogenation of propane over Pt-SBA-15: Effect of Pt particle size. Catal. Commun. 2008, 9, 747–750. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, T.; Xu, X.; Xiao, P.; Li, J. Pt nanoparticles supported on SBA-15: Synthesis, characterization and applications in heterogeneous catalysis. Appl. Catal. B 2013, 130–131, 197–217. [Google Scholar] [CrossRef]
- Usón, L.; Colmenares, M.G.; Hueso, J.L.; Sebastián, V.; Balas, F.; Arruebo, M.; Santamaría, J. VOCs abatement using thick eggshell Pt/SBA-15 pellets with hierarchical porosity. Catal. Today 2014, 227, 179–186. [Google Scholar] [CrossRef]
- Li, L.; Wua, P.; Yu, Q.; Wu, G.; Guan, N. Low temperature H2-SCR over platinum catalysts supported on Ti-containing MCM-41. Appl. Catal. B 2010, 94, 254–262. [Google Scholar] [CrossRef]
- Venezia, A.M.; Di Carlo, G.; Liotta, L.F.; Pantaleo, G.; Kantcheva, M. Effect of Ti(IV) loading on CH4 oxidation activity and SO2 tolerance of Pd catalysts supported on silica SBA-15 and HMS. Appl. Catal. B 2011, 106, 529–539. [Google Scholar] [CrossRef]
- Filip, M.; Petcu, G.; Anghel, E.; Petrescu, S.; Trica, B.; Osiceanu, P.; Stanica, N.; Atkinson, I.; Munteanu, C.; Mureseanu, M.; et al. FeTi- SBA-15 magnetic nanocomposites with photocatalytic properties. Catal. Today 2021, 366, 10–19. [Google Scholar] [CrossRef]
- Ganiyu, S.A.; Alhooshani, K.; Ali, S.A. Single-pot synthesis of Ti-SBA-15-NiMo hydrodesulfurization catalysts: Role of calcination temperature on dispersion and activity. Appl. Catal. B 2017, 203, 428–441. [Google Scholar] [CrossRef]
- Ciobanu, M.; Petcu, G.; Anghel, E.M.; Papa, F.; Apostol, N.G.; Culita, D.C.; Atkinson, I.; Todorova, S.; Shopska, M.; Naydenov, A.; et al. Influence of Ce addition and Pt loading upon the catalytic properties of modified mesoporous PtTi-SBA-15 in total oxidation reactions. Appl. Catal. A 2021, 619, 118123. [Google Scholar] [CrossRef]
- Filip, M.; Todorova, S.; Shopska, M.; Ciobanu, M.; Papa, F.; Somacescu, S.; Munteanu, C.; Parvulescu, V. Effects of Ti loading on activity and redox behavior of metals in PtCeTi/KIT-6 catalysts for CH4 and CO oxidation. Catal. Today 2018, 306, 138–144. [Google Scholar] [CrossRef]
- Nguyen, V.H.; Lin, S.D.; Wu, J.C.S. Synergetic photo-epoxidation of propylene over VTi/MCM-41 mesoporous photocatalysts. J. Catal. 2015, 331, 21–227. [Google Scholar] [CrossRef]
- Shanmugam, V.; Zapf, R.; Neuberg, S.; Hessel, V.; Kolb, G. Effect of ceria and zirconia promotors on Ni/SBA-15 catalysts for coking and sintering resistant steam reforming of propylene glycol in microreactors. Appl. Catal. B 2017, 203, 859–869. [Google Scholar] [CrossRef]
- Li, D.; Zeng, L.; Li, X.; Wang, X.; Ma, H.; Assabumrungrat, S.; Gong, J. Ceria-promoted Ni/SBA-15 catalysts for ethanol steam reforming with enhanced activity and resistance to deactivation. Appl. Catal. B 2015, 176–177, 532–541. [Google Scholar] [CrossRef]
- Bonne, M.; Samoila, P.; Ekou, T.; Especel, C.; Epron, F.; Marecot, P.; Royer, S.; Duprez, D. Control of titania nanodomain size as a route to modulate SMSI effect in Pt/TiO2 catalysts. Catal. Commun. 2010, 12, 86–91. [Google Scholar] [CrossRef]
- Benz, D.; Van Bui, H.; Hintzen, H.T.; Kreutzer, M.T.; Ruud van Ommen, J. Synthesis of a Rationally Designed Multi-Component Photocatalyst Pt:SiO2:TiO2(P25) with Improved Activity for Dye Degradation by Atomic Layer Deposition. Nanomaterials 2020, 10, 1496. [Google Scholar] [CrossRef]
- Valdés-Martínez, O.U.; Suárez-Toriello, V.A.; de los Reyes, J.A.; Pawelec, B.; Fierro, J.L.G. Support effect and metals interactions for NiRu/Al2O3, TiO2 and ZrO2 catalysts in the hydrodeoxygenation of phenol. Catal. Today 2017, 296, 219–227. [Google Scholar] [CrossRef]
- Bailón-García, E.; Carrasco-Marín, F.; Pérez-Cadenas, A.F.; Maldonado-Hódar, F.J. Influence of the pretreatment conditions on the development and performance of active sites of Pt/TiO2 catalysts used for the selective citral hydrogenation. J. Catal. 2015, 327, 86–95. [Google Scholar] [CrossRef]
- Shah, M.S.A.S.; Oh, C.; Park, H.; Hwang, Y.J.; Ma, M.; Park, J.H. Catalytic Oxidation of Methane to Oxygenated Products: Recent Advancements and Prospects for Electrocatalytic and Photocatalytic Conversion at Low Temperatures. Adv. Sci. 2020, 7, 2001946. [Google Scholar] [CrossRef] [PubMed]
- Feng, N.; Lin, H.; Song, H.; Yang, L.; Tang, D.; Deng, F.; Ye, J. Efficient and selective photocatalytic CH4 conversion to CH3OH with O2 by controlling overoxidation on TiO2. Nat. Commun. 2021, 12, 4652. [Google Scholar] [CrossRef]
- Stakheev, A.Y.; Gololobov, A.M.; Beck, I.E.; Bragina, G.O.; Zaikovsky, V.I.; Ayupov, A.B.; Telegina, N.S.; Bukhtiyarov, V.I. Effect of Pt nanoparticle size on the specific catalytic activity of Pt/SiO2 and Pt/TiO2 in the total oxidation of methane and n-butane. Russ. Chem. Bull. 2010, 59, 1713–1719. [Google Scholar] [CrossRef]
- Wilburn, M.S.; Epling, W.S. Sulfur deactivation and regeneration of mono- and bimetallic Pd-Pt methane oxidation catalysts. Appl. Catal. B 2017, 206, 589–598. [Google Scholar] [CrossRef]
- Yashnik, S.A.; Chesalov, Y.A.; Ishchenko, A.V.; Kaichev, V.V.; Ismagilov, Z.R. Effect of Pt addition on sulfur dioxide and water vapor tolerance of Pd-Mn-hexaaluminate catalysts for high-temperature oxidation of methane. Appl. Catal. B 2017, 204, 89–106. [Google Scholar] [CrossRef]
- Alegre, V.V.; da Silva, M.A.P.; Schmal, M. Catalytic combustion of methane over palladium alumina modified by niobia. Catal. Commun. 2006, 7, 314–322. [Google Scholar] [CrossRef]
- Damyanova, S.; Bueno, J.M.C. Effect of CeO2 loading on the surface and catalytic behaviors of CeO2-Al2O3-supported Pt catalysts. Appl. Catal. A 2003, 253, 135–150. [Google Scholar] [CrossRef]
- de Lucas, A.; Rodrίguez, L.; Sánchez, P. Synthesis of TS-2 in the system SiO2–TiO2–H2O2–TBAOH. Influence of the synthesis variables. Appl. Catal. A 1999, 180, 375–383. [Google Scholar] [CrossRef]
- Hess, C. New advances in using Raman spectroscopy for the characterization of catalysts and catalytic reactions. Chem. Soc. Rev. 2021, 50, 3519. [Google Scholar] [CrossRef]
- Xiong, G.; Cao, Y.; Guo, Z.; Jia, Q.; Tiana, F.; Liu, L. The roles of different titanium species in TS-1 zeolite in propylene epoxidation studied by in situ UV Raman spectroscopy. Phys. Chem. Chem. Phys. 2016, 18, 190. [Google Scholar] [CrossRef] [PubMed]
- Borodko, Y.; Ager, J.W.; Marti, G.E.; Song, H.; Niesz, K.; Somorjai, G.A. Structure Sensitivity of Vibrational Spectra of Mesoporous Silica SBA-15 and Pt/SBA-15. J. Phys. Chem. B 2005, 109, 17386–17390. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Xiong, G.; Liu, J.; Ying, P.; Xin, A.Q.; Feng, Z. Identifying Framework Titanium in TS-1 Zeolite by UV Resonance Raman Spectroscopy. J. Phys. Chem. B 2001, 105, 2993–2997. [Google Scholar] [CrossRef]
- Malfait, B.; Moréac, A.; Jani, A.; Lefort, R.; Huber, P.; Fröba, M.; Morineau, D. Structure of Water at Hydrophilic and Hydrophobic Interfaces: Raman Spectroscopy of Water Confined in Periodic Mesoporous (Organo) Silicas. J. Phys. Chem. C 2022, 126, 3520–3531. [Google Scholar] [CrossRef]
- Araújo, M.M.; Silva, L.K.R.; Sczancosk, J.C.; Orlandi, M.O.; Longo, E.; Santos, A.G.D.; Sá, J.L.S.; Santos, R.S.; Luz, G.E., Jr.; Cavalcante, L.S. Anatase TiO2 nanocrystals anchored at inside of SBA-15 mesopores and their optical behavior. Appl. Surf. Sci. 2016, 389, 1137–1147. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, Q.; Li, M.; Feng, Z.; Li, C. UV Raman Spectroscopic Study on TiO2. II. Effect of Nanoparticle Size on the Outer/Inner Phase Transformations. J. Phys. Chem. C 2009, 113, 1698–1704. [Google Scholar] [CrossRef]
- Gotic, M.; Ivanda, M.; Popovic, S.; Music, S.; Sekulic, A.; Turkovic, A.; Furic, K. Raman investigation of nanosized TiO2. J. Ram. Spectrosc. 1997, 228, 555–558. [Google Scholar] [CrossRef]
- Wang, Q.; Fan, J.; Zhang, S.; Yun, Y.; Zhang, J.; Zhang, P.; Hu, J.; Wang, L.; Shao, G. In situ coupling of Ti2O with rutile TiO2 as a core–shell structure and its photocatalysis performance. RSC Adv. 2017, 7, 54662. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, M.; Qin, X. Photocatalytic Activity of TiO2 Nanofibers: The Surface Crystalline Phase Matters. Nanomaterials 2019, 9, 535. [Google Scholar] [CrossRef]
- Su, W.; Zhang, J.; Feng, Z.; Chen, T.; Ying, P.; Li, C. Surface Phases of TiO2 Nanoparticles Studied by UV Raman Spectroscopy and FT-IR Spectroscopy. J. Phys. Chem. C 2008, 112, 7710–7716. [Google Scholar] [CrossRef]
- Lassaletta, G.; Caballero, A.; Wu, S.; Gonzalez-Elipe, A.R.; Fernandez, A. Photoelectron spectroscopy of metal oxide particles: Size and support effects. Vacuum 1994, 45, 1085–1086. [Google Scholar] [CrossRef]
- Das, S.K.; Bhunia, M.K.; Bhaumik, A. Highly ordered Ti-SBA-15: Efficient H2 adsorbent and photocatalyst for eco-toxic dye degradation. J. Solid State Chem. 2010, 183, 1326–1333. [Google Scholar] [CrossRef]
- Li, N.; Chen, Q.Y.; Luo, L.F.; Huang, W.X.; Luo, M.F.; Hu, G.S.; Lu, J.Q. Kinetic study and the effect of particle size on low temperature CO oxidation over Pt/TiO2 catalysts. Appl. Catal. B 2013, 142–143, 523–532. [Google Scholar] [CrossRef]
- Aramendía, M.A.; Colmenares, J.C.; Marinas, A.; Marinas, J.M.; Moreno, J.M.; Navío, J.A.; Urbano, F.J. Effect of the redox treatment of Pt/TiO2 system on its photocatalytic behaviour in the gas phase selective photooxidation of propan-2-ol. Catal. Today 2007, 128, 235–244. [Google Scholar] [CrossRef]
- Saputera, W.H.; Scott, J.A.; Friedmann, D.; Amal, R. Revealing the key oxidative species generated by Pt-loaded metal oxides under dark and light conditions. Appl. Catal. B 2018, 223, 216–227. [Google Scholar] [CrossRef]
- Vasile, A.; Papa, F.; Bratan, V.; Munteanu, C.; Teodorescu, M.; Atkinson, I.; Anastasescu, M.; Kawamoto, D.; Negrila, C.; Ene, C.D.; et al. Water denitration over titania-supported Pt and Cu by combined photocatalytic and catalytic processes: Implications for hydrogen generation properties in a photocatalytic system. J. Environ. Chem. Eng. 2022, 10, 107129. [Google Scholar] [CrossRef]
- Petallidou, K.C.; Polychronopoulou, K.; Fierro, J.L.G.; Efstathiou, A.M. Low-temperature water-gas shift on Pt/Ce0.8La0.2O2−δ–CNT: The effect of Ce0.8La0.2O2−δ/CNT ratio. Appl. Catal. A 2015, 504, 585–598. [Google Scholar] [CrossRef]
- Chen, A.; Guo, H.; Song, Y.; Chen, P.; Lou, H. Recyclable CeO2–ZrO2 and CeO2–TiO2 mixed oxides based Pt catalyst for aqueous-phase reforming of the low-boiling fraction of bio-oil. Int. J. Hydrogen Energy 2017, 42, 9577–9588. [Google Scholar] [CrossRef]
- Kim, M.S.; Chung, S.H.; Yoo, C.J.; Lee, M.S.; Cho, I.H.; Lee, D.W.; Lee, K.Y. Catalytic Reduction of Nitrate in Water over Pd-Cu/TiO2 Catalyst: Effect of the Strong Metal-Support Interaction (SMSI) on the Catalytic Activity. Appl. Catal. B 2013, 142–143, 354–361. [Google Scholar] [CrossRef]
- Kim, S.S.; Lee, H.H.; Hong, S.C. A study on the effect of support’s reducibility on the reverse water-gas shift reaction over Pt catalysts. Appl. Catal. A 2012, 423–424, 100–107. [Google Scholar] [CrossRef]
- Lee, J.W.; Jeong, R.H.; Kim, D.I.; Yu, J.-H.; Nam, S.-H.; Boo, J.-H. Facile synthesis of amorphous Ti-peroxo complex for photocatalytic activity under visible-light irradiation. J. Clean. Prod. 2019, 239, 118013. [Google Scholar] [CrossRef]
- Chung, S.-H.; Park, G.H.; Schukkink, N.; Lee, H.; Shiju, N.R. Structure-sensitive epoxidation of dicyclopentadiene over TiO2 catalysts. Chem. Commun. 2023, 59, 756. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Choi, S.M.; Green, S.; Tompsett, G.A.; Seo, M.H.; Lee, S.H.; Cho, J.; Huber, G.W.; Kim, W.B. Highly active and stable PtRuSn/C catalyst for electrooxidations of ethylene glycol and glycerol. Appl. Catal. B 2011, 101, 366–375. [Google Scholar] [CrossRef]
- Tanaka, K.; Watanabe, N. Study on the Coordination Structure of Pt Sorbed on Bacterial Cells Using X-ray Absorption Fine Structure Spectroscopy. PLoS ONE 2015, 10, e0127417. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.Y.; Yun, H.J.; Yu, S.; Kim, W.; Kim, N.D.; Yi, J. Effect of TiO2 crystalline phase on CO oxidation over CuO catalysts supported on TiO2. J. Mol. Catal. A Chem. 2013, 368–369, 72–77. [Google Scholar] [CrossRef]
- Pakharukov, I.Y.; Prosvirin, I.P.; Chetyrin, I.A.; Bukhtiyarov, V.I.; Parmon, V.N. In situ XPS studies of kinetic hysteresis in methane oxidation over Pt/γ-Al2O3 catalysts. Catal. Today 2016, 278, 135–139. [Google Scholar] [CrossRef]
- Chetyrin, I.A.; Bukhtiyarov, A.V.; Prosvirin, I.P.; Khudorozhkov, A.K.; Bukhtiyarov, V.I. In Situ XPS and MS Study of Methane Oxidation on the Pd–Pt/Al2O3 Catalysts. Top. Catal. 2020, 63, 66–74. [Google Scholar] [CrossRef]
- Khudorozhkov, A.K.; Chetyrin, I.A.; Bukhtiyarov, A.V.; Prosvirin, I.P.; Bukhtiyarov, V.I. Propane Oxidation Over Pd/Al2O3: Kinetic and In Situ XPS Study. Top. Catal. 2017, 60, 190–197. [Google Scholar] [CrossRef]
Pt chemical Species, % (Pt4f7/2 Bes) | Atomic Relative Concentration, at% | ||||||
---|---|---|---|---|---|---|---|
Pt0 (71.1 ± 0.2 eV) | PtO (72.2 ± 0.2 eV) | Pt(OH)2 (74.4 ± 0.2 eV) | O | Si | Ti | Pt | |
PT1SB | 22.6 | 22.2 | 55.2 | 71.40 | 28.45 | 0.13 | 0.02 |
PT5SB | 57.4 | 8.4 | 34.2 | 71.58 | 28.22 | 0.17 | 0.03 |
PT30SB | 30.2 | 21.2 | 48.6 | 71.69 | 25.42 | 2.84 | 0.06 |
PT30P | 27.2 | 17.7 | 55.1 | 71.47 | 26.11 | 2.38 | 0.04 |
Catalysts | Dispersion, % | Average Crystallite Size, nm | Metal Surface Area, m2/g | H2 Consumption, µmol/g |
---|---|---|---|---|
PT1SB | 26.7 | 1.2 | 69.6 | 169 |
PT5SB | 45.8 | 0.84 | 112.7 | 48 |
PT10SB | 41.3 | 0.95 | 102.5 | 124 |
PT30SB | 38.1 | 0.98 | 94.06 | 86 |
PT5SP | 48.1 | 0.78 | 118.5 | 50 |
PT10SP | 43.5 | 0.99 | 98.6 | 145 |
PT30SP | 32.5 | 1.16 | 79.95 | 88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filip, M.; Anghel, E.M.; Rednic, V.; Papa, F.; Somacescu, S.; Munteanu, C.; Aldea, N.; Zhang, J.; Parvulescu, V. Variation in Metal–Support Interaction with TiO2 Loading and Synthesis Conditions for Pt-Ti/SBA-15 Active Catalysts in Methane Combustion. Nanomaterials 2023, 13, 1647. https://doi.org/10.3390/nano13101647
Filip M, Anghel EM, Rednic V, Papa F, Somacescu S, Munteanu C, Aldea N, Zhang J, Parvulescu V. Variation in Metal–Support Interaction with TiO2 Loading and Synthesis Conditions for Pt-Ti/SBA-15 Active Catalysts in Methane Combustion. Nanomaterials. 2023; 13(10):1647. https://doi.org/10.3390/nano13101647
Chicago/Turabian StyleFilip, Mihaela, Elena Maria Anghel, Vasile Rednic, Florica Papa, Simona Somacescu, Cornel Munteanu, Nicolae Aldea, Jing Zhang, and Viorica Parvulescu. 2023. "Variation in Metal–Support Interaction with TiO2 Loading and Synthesis Conditions for Pt-Ti/SBA-15 Active Catalysts in Methane Combustion" Nanomaterials 13, no. 10: 1647. https://doi.org/10.3390/nano13101647
APA StyleFilip, M., Anghel, E. M., Rednic, V., Papa, F., Somacescu, S., Munteanu, C., Aldea, N., Zhang, J., & Parvulescu, V. (2023). Variation in Metal–Support Interaction with TiO2 Loading and Synthesis Conditions for Pt-Ti/SBA-15 Active Catalysts in Methane Combustion. Nanomaterials, 13(10), 1647. https://doi.org/10.3390/nano13101647