Morphology and Microwave-Absorbing Performances of Rubber Blends with Multi-Walled Carbon Nanotubes and Molybdenum Disulfide
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Composites
2.3. Characterization
3. Results and Discussion
3.1. Nanostructure of Fillers
3.2. Morphology of Composites
3.3. Microwave-Absorbing Properties of Composites
3.4. Microwave Attenuation Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sharma, G.K.; James, N.R. Progress in Electrospun Polymer Composite Fibers for Microwave Absorption and Electromagnetic Interference Shielding. ACS Appl. Electron. Mater. 2021, 3, 4657–4680. [Google Scholar] [CrossRef]
- Wongkasem, N. Electromagnetic pollution alert: Microwave radiation and absorption in human organs and tissues. Electromagn. Biol. Med. 2021, 40, 236–253. [Google Scholar] [CrossRef]
- Wang, Y.; Du, Y.; Xu, P.; Qiang, R.; Han, X. Recent Advances in Conjugated Polymer-Based Microwave Absorbing Materials. Polymers. 2017, 9, 29. [Google Scholar] [CrossRef][Green Version]
- Zeng, X.; Cheng, X.; Yu, R.; Stucky, G.D. Electromagnetic microwave absorption theory and recent achievements in microwave absorbers. Carbon 2020, 168, 606–623. [Google Scholar] [CrossRef]
- Pang, H.; Duan, Y.; Huang, L.; Song, L.; Liu, J.; Zhang, T.; Yang, X.; Liu, J.; Ma, X.; Di, J.; et al. Research advances in composition, structure and mechanisms of microwave absorbing materials. Compos. Part B Eng. 2021, 224, 109173. [Google Scholar] [CrossRef]
- Shtarkova, R.; Dishovsky, N. Elastomer-based Microwave Absorbing Materials. J. Elastomers Plast. 2009, 41, 163–174. [Google Scholar] [CrossRef]
- Kruzelak, J.; Kvasnicakova, A.; Hlozekova, K.; Hudec, I. Progress in polymers and polymer composites used as efficient materials for EMI shielding. Nanoscale Adv. 2021, 3, 123–172. [Google Scholar] [CrossRef]
- Zhai, Y.; Zhang, Y.; Ren, W. Electromagnetic characteristic and microwave absorbing performance of different carbon-based hydrogenated acrylonitrile–butadiene rubber composites. Mater. Chem. Phys. 2012, 133, 176–181. [Google Scholar] [CrossRef]
- Kwon, S.; Ma, R.; Kim, U.; Choi, H.R.; Baik, S. Flexible electromagnetic interference shields made of silver flakes, carbon nanotubes and nitrile butadiene rubber. Carbon 2014, 68, 118–124. [Google Scholar] [CrossRef]
- Singh, V.K.; Shukla, A.; Patra, M.K.; Saini, L.; Jani, R.K.; Vadera, S.R.; Kumar, N. Microwave absorbing properties of a thermally reduced graphene oxide/nitrile butadiene rubber composite. Carbon 2012, 50, 2202–2208. [Google Scholar] [CrossRef]
- Fan, Q.; Huang, Y.; Chen, M.; Li, Y.; Song, W.; Fang, D. Integrated design of component and configuration for a flexible and ultrabroadband radar absorbing composite. Compos. Sci. Technol. 2019, 176, 81–89. [Google Scholar] [CrossRef]
- Al-Ghamdi, A.A.; Al-Hartomy, O.A.; Al-Solamy, F.R.; Dishovsky, N.; Malinova, P.; Atanasova, G.; Atanasov, N. Conductive carbon black/magnetite hybrid fillers in microwave absorbing composites based on natural rubber. Compos. Part B Eng. 2016, 96, 231–241. [Google Scholar] [CrossRef]
- Kong, I.; Hj Ahmad, S.; Hj Abdullah, M.; Hui, D.; Nazlim Yusoff, A.; Puryanti, D. Magnetic and microwave absorbing properties of magnetite–thermoplastic natural rubber nanocomposites. J. Magn. Magn. Mater. 2010, 322, 3401–3409. [Google Scholar] [CrossRef]
- Crespo, M.; Méndez, N.; González, M.; Baselga, J.; Pozuelo, J. Synergistic effect of magnetite nanoparticles and carbon nanofibres in electromagnetic absorbing composites. Carbon 2014, 74, 63–72. [Google Scholar] [CrossRef][Green Version]
- Ravindren, R.; Mondal, S.; Nath, K.; Das, N.C. Synergistic effect of double percolated co-supportive MWCNT-CB conductive network for high-performance EMI shielding application. Polym. Adv. Technol. 2019, 30, 1506–1517. [Google Scholar] [CrossRef]
- Vinayasree, S.; Balachandran Nair, A.; Mani, M.; Archana, V.N.; Joseph, R.; Mohanan, P.; Joy, P.A.; Anantharaman, M.R. A stealth emulsion based on natural rubber latex, core-shell ferrofluid/carbon black in the S and X bands. Nanotechnology 2019, 30, 315703. [Google Scholar] [CrossRef]
- Hu, J.; Liang, C.; Li, J.; Liang, Y.; Li, S.; Li, G.; Wang, Z.; Dong, D. Flexible reduced graphene oxide@Fe3O4/silicone rubber composites for enhanced microwave absorption. Appl. Surf. Sci. 2021, 570, 151270. [Google Scholar] [CrossRef]
- Huang, Y.; Fan, Q.; Chen, J.; Li, L.; Chen, M.; Tang, L.; Fang, D. Optimization of flexible multilayered metastructure fabricated by dielectric-magnetic nano lossy composites with broadband microwave absorption. Compos. Sci. Technol. 2020, 191, 108066. [Google Scholar] [CrossRef]
- Xu, R.; Xu, D.; Zeng, Z.; Liu, D. CoFe2O4/porous carbon nanosheet composites for broadband microwave absorption. Chem. Eng. J. 2022, 427, 130796. [Google Scholar] [CrossRef]
- Hong Le, H.; Ilisch, S.; Heinrich, G.; Radusch, H.-J. Filler Migration in Natural Rubber Blends During the Mixing Process. In Natural Rubber Materials; Royal Society of Chemistry: Cambridge, UK, 2013; Chapter 6; pp. 132–176. [Google Scholar]
- Kaliyathan, A.V.; Rane, A.V.; Huskic, M.; Kunaver, M.; Kalarikkal, N.; Rouxel, D.; Thomas, S. Carbon black distribution in natural rubber/butadiene rubber blend composites: Distribution driven by morphology. Compos. Sci. Technol. 2020, 200, 108484. [Google Scholar] [CrossRef]
- Otero-Navas, I.; Arjmand, M.; Sundararaj, U. Carbon nanotube induced double percolation in polymer blends: Morphology, rheology and broadband dielectric properties. Polymer 2017, 114, 122–134. [Google Scholar] [CrossRef]
- Bian, Y.; Li, Y. Porous conductive elastomeric composites with carbon nanotubes suspended in the narrow pores from Co-continuous polymer blend nanocomposites. Compos. Sci. Technol. 2022, 218, 109116. [Google Scholar] [CrossRef]
- Zhang, C.; Tang, Z.; An, X.; Fang, S.; Wu, S.; Guo, B. Generic Method to Create Segregated Structures toward Robust, Flexible, Highly Conductive Elastomer Composites. ACS Appl. Mater. Interfaces 2021, 13, 24154–24163. [Google Scholar] [CrossRef]
- Le, H.H.; Hamann, E.; Ilisch, S.; Heinrich, G.; Radusch, H.J. Selective wetting and dispersion of filler in rubber composites under influence of processing and curing additives. Polymer 2014, 55, 1560–1569. [Google Scholar] [CrossRef]
- Thankappan Nair, S.; Vijayan, P.P.; Xavier, P.; Bose, S.; George, S.C.; Thomas, S. Selective localisation of multi walled carbon nanotubes in polypropylene/natural rubber blends to reduce the percolation threshold. Compos. Sci. Technol. 2015, 116, 9–17. [Google Scholar] [CrossRef]
- Gao, C.; Zhang, S.; Wang, F.; Wen, B.; Han, C.; Ding, Y.; Yang, M. Graphene networks with low percolation threshold in ABS nanocomposites: Selective localization and electrical and rheological properties. ACS Appl. Mater. Interfaces 2014, 6, 12252–12260. [Google Scholar] [CrossRef]
- Zhao, P.; Li, L.; Luo, Y.; Lv, Z.; Xu, K.; Li, S.; Zhong, J.; Wang, Z.; Peng, Z. Effect of blend ratio on the morphology and electromagnetic properties of nanoparticles incorporated natural rubber blends. Compos. Part B Eng. 2016, 99, 216–223. [Google Scholar] [CrossRef]
- Li, L.; Wang, Z.; Zhao, P.; Luo, Y.; Liao, L.; Xu, K.; Li, P.; Wang, Z.; Peng, Z. Thermodynamics favoured preferential location of nanoparticles in co-continuous rubber blend toward improved electromagnetic properties. Eur. Polym. J. 2017, 92, 275–286. [Google Scholar] [CrossRef]
- Li, L.; Zhao, P.; Luo, Y.; Yu, H.; Tao, J.; He, D.; Gong, W.; Li, D.; Wang, Z.; Peng, Z. Compatibility-tuned distribution of nanoparticles in co-continuous rubber structures toward microwave absorption enhancement. RSC Adv. 2017, 7, 1093–1100. [Google Scholar] [CrossRef][Green Version]
- Geng, H.; Zhao, P.; Mei, J.; Chen, Y.; Yu, R.; Zhao, Y.; Ding, A.; Peng, Z.; Liao, L.; Liao, J. Improved microwave absorbing performance of natural rubber composite with multi-walled carbon nanotubes and molybdenum disulfide hybrids. Polym. Adv. Technol. 2020, 31, 2752–2762. [Google Scholar] [CrossRef]
- Shi, S.; Sun, Z.; Hu, Y.H. Synthesis, stabilization and applications of 2-dimensional 1T metallic MoS2. J. Mater. Chem. A 2018, 6, 23932–23977. [Google Scholar] [CrossRef]
- Ning, M.Q.; Lu, M.M.; Li, J.B.; Chen, Z.; Dou, Y.K.; Wang, C.Z.; Rehman, F.; Cao, M.S.; Jin, H.B. Two-dimensional nanosheets of MoS2: A promising material with high dielectric properties and microwave absorption performance. Nanoscale 2015, 7, 15734–15740. [Google Scholar] [CrossRef] [PubMed]
- Kong, N.; Lv, K.; Chen, W.; Guan, J.; Zhao, P.; Tao, J.; Zhang, J. Natural Polymer Template for Low-Cost Producing High-Performance Ti3C2Tx MXene Electrodes for Flexible Supercapacitors. ACS Appl. Mater. Interfaces 2022, 14, 56877–56885. [Google Scholar] [CrossRef]
- Biswas, S.; Kar, G.P.; Bose, S. Engineering nanostructured polymer blends with controlled nanoparticle location for excellent microwave absorption: A compartmentalized approach. Nanoscale 2015, 7, 11334–11351. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wang, Z.; Zhao, P.; Li, P.; Li, S.; Liao, L.; Luo, Y.; Peng, Z.; He, D.; Cheng, Y. Hierarchical cerium oxide anchored multi-walled carbon nanotube hybrid with synergistic effect for microwave attenuation. Compos. Part B Eng. 2019, 167, 477–486. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, D.; Cai, J.; Yuan, L.; Zhang, W. Microwave absorbing property of silicone rubber composites with added carbonyl iron particles and graphite platelet. J. Magn. Magn. Mater. 2013, 327, 82–86. [Google Scholar] [CrossRef]
- Zhan, Y.; Wang, J.; Zhang, K.; Li, Y.; Meng, Y.; Yan, N.; Wei, W.; Peng, F.; Xia, H. Fabrication of a flexible electromagnetic interference shielding Fe3O4@reduced graphene oxide/natural rubber composite with segregated network. Chem. Eng. J. 2018, 344, 184–193. [Google Scholar] [CrossRef]
- Liu, Z.; Bai, G.; Huang, Y.; Li, F.; Ma, Y.; Guo, T.; He, X.; Lin, X.; Gao, H.; Chen, Y. Microwave Absorption of Single-Walled Carbon Nanotubes/Soluble Cross-Linked Polyurethane Composites. J. Phys. Chem. C 2007, 111, 13696–13700. [Google Scholar] [CrossRef]
- Vinayasree, S.; Soloman, M.A.; Sunny, V.; Mohanan, P.; Kurian, P.; Anantharaman, M.R. A microwave absorber based on strontium ferrite–carbon black–nitrile rubber for S and X-band applications. Compos. Sci. Technol. 2013, 82, 69–75. [Google Scholar] [CrossRef]
- Shen, J.; Yao, Y.; Liu, Y.; Leng, J. Preparation and characterization of CNT films/silicone rubber composite with improved microwave absorption performance. Mater. Res. Express 2019, 6, 075610. [Google Scholar] [CrossRef][Green Version]
- Geng, H.; Zhang, X.; Xie, W.; Zhao, P.; Wang, G.; Liao, J.; Dong, L. Lightweight and broadband 2D MoS(2) nanosheets/3D carbon nanofibers hybrid aerogel for high-efficiency microwave absorption. J. Colloid Interface Sci. 2022, 609, 33–42. [Google Scholar] [CrossRef]
- Chen, J.; Zheng, J.; Huang, Q.; Wang, F.; Ji, G. Enhanced Microwave Absorbing Ability of Carbon Fibers with Embedded FeCo/CoFe2O4 Nanoparticles. ACS Appl Mater Interfaces 2021, 13, 36182–36189. [Google Scholar] [CrossRef]
- Long, A.; Zhao, P.; Liao, L.; Wang, R.; Tao, J.; Liao, J.; Liao, X.; Zhao, Y. Sustainable Kapok Fiber-Derived Carbon Microtube as Broadband Microwave Absorbing Material. Materials 2022, 15, 4845. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Meng, F.; Li, J.; Li, T.; Chen, Z.; Luo, H.; Zhou, Z. Carbonized Design of Hierarchical Porous Carbon/Fe3O4@Fe Derived from Loofah Sponge to Achieve Tunable High-Performance Microwave Absorption. Acs Sustain. Chem. Eng. 2018, 6, 11801–11810. [Google Scholar] [CrossRef]
- Yadav, R.S.; Kuřitka, I.; Vilcakova, J.; Skoda, D.; Urbánek, P.; Machovsky, M.; Masař, M.; Kalina, L.; Havlica, J. Lightweight NiFe2O4-Reduced Graphene Oxide-Elastomer Nanocomposite flexible sheet for electromagnetic interference shielding application. Compos. Part B Eng. 2019, 166, 95–111. [Google Scholar] [CrossRef]
Component | NR/g | NBR/g | MWCNTs/g | MoS2/g | S/g | ZnO/g | SA/g | CBS/g |
---|---|---|---|---|---|---|---|---|
MWCNTs-MoS2/NR | 40.00 | 0.00 | 4.20 | 9.60 | 0.60 | 1.00 | 0.40 | 0.56 |
MWCNTs-MoS2/NBR | 0.00 | 40.00 | 4.20 | 9.60 | 0.60 | 1.00 | 0.40 | 0.56 |
MWCNTs-MoS2/NR-NBR | 20.00 | 20.00 | 4.20 | 9.60 | 0.60 | 1.00 | 0.40 | 0.56 |
MWCNTs-NR/MoS2-NR | 40.00 | 0.00 | 4.20 | 9.60 | 0.60 | 1.00 | 0.40 | 0.56 |
MWCNTs-NBR/MoS2-NBR | 0.00 | 40.00 | 4.20 | 9.60 | 0.60 | 1.00 | 0.40 | 0.56 |
MWCNTs-NBR/MoS2-NR | 20.00 | 20.00 | 4.20 | 9.60 | 0.60 | 1.00 | 0.40 | 0.56 |
MWCNTs-NR/MoS2-NBR | 20.00 | 20.00 | 4.20 | 9.60 | 0.60 | 1.00 | 0.40 | 0.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, L.; Chen, J.; Liu, B.; Zhao, P.; Liao, L.; Tao, J.; Wang, Y.; Wang, B.; Deng, J.; Zhao, Y. Morphology and Microwave-Absorbing Performances of Rubber Blends with Multi-Walled Carbon Nanotubes and Molybdenum Disulfide. Nanomaterials 2023, 13, 1644. https://doi.org/10.3390/nano13101644
Huang L, Chen J, Liu B, Zhao P, Liao L, Tao J, Wang Y, Wang B, Deng J, Zhao Y. Morphology and Microwave-Absorbing Performances of Rubber Blends with Multi-Walled Carbon Nanotubes and Molybdenum Disulfide. Nanomaterials. 2023; 13(10):1644. https://doi.org/10.3390/nano13101644
Chicago/Turabian StyleHuang, Le, Jingru Chen, Bingjun Liu, Pengfei Zhao, Lusheng Liao, Jinlong Tao, Yueqiong Wang, Bingbing Wang, Jing Deng, and Yanfang Zhao. 2023. "Morphology and Microwave-Absorbing Performances of Rubber Blends with Multi-Walled Carbon Nanotubes and Molybdenum Disulfide" Nanomaterials 13, no. 10: 1644. https://doi.org/10.3390/nano13101644
APA StyleHuang, L., Chen, J., Liu, B., Zhao, P., Liao, L., Tao, J., Wang, Y., Wang, B., Deng, J., & Zhao, Y. (2023). Morphology and Microwave-Absorbing Performances of Rubber Blends with Multi-Walled Carbon Nanotubes and Molybdenum Disulfide. Nanomaterials, 13(10), 1644. https://doi.org/10.3390/nano13101644