Efficient Second- and Third-Harmonic Generations in Er3+/Fe2+-Doped Lithium Niobate Single Crystal with Engineered Surficial Cylindrical Hole Arrays
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nie, W. Optical nonlinearity: Phenomena, applications, and materials. Adv. Mater. 1993, 5, 520–545. [Google Scholar] [CrossRef]
- Zhang, M.; Buscaino, B.; Wang, C.; Shams-Ansari, A.; Reimer, C.; Zhu, R.; Kahn, J.M.; Lončar, M. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature 2019, 568, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Sidorov, N.V.; Antonycheva, E.A.; Syuĭ, A.V.; Palatnikov, M.N. Photorefractive properties of stoichiometric lithium niobate single crystals. Crystallogr. Rep. 2010, 55, 1019–1024. [Google Scholar] [CrossRef]
- Xu, Y.; Shen, M.; Lu, J.; Surya, J.B.; Al Sayem, A.; Tang, H.X. Mitigating photorefractive effect in thin-film lithium niobate microring resonators. Opt. Express 2021, 29, 5497–5504. [Google Scholar] [CrossRef] [PubMed]
- Chai, Q.; Yang, D.; Zhao, X.; Chao, X.; Yang, Z. Lead-free (K, Na) NbO3-based ceramics with high optical transparency and large energy storage ability. J. Am. Ceram. Soc. 2018, 101, 2321–2329. [Google Scholar] [CrossRef]
- Crossland, E.J.; Noel, N.; Sivaram, V.; Leijtens, T.; Alexander-Webber, J.A.; Snaith, H.J. Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance. Nature 2013, 495, 215–219. [Google Scholar] [CrossRef]
- Nozaki, K.; Tanabe, T.; Shinya, A.; Matsuo, S.; Sato, T.; Taniyama, H.; Notomi, M. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nat. Photonics 2010, 4, 477–483. [Google Scholar] [CrossRef]
- Volz, T.; Reinhard, A.; Winger, M.; Badolato, A.; Hennessy, K.J.; Hu, E.L.; Imamoğlu, A. Ultrafast all-optical switching by single photons. Nat. Photonics 2012, 6, 605–609. [Google Scholar] [CrossRef]
- Piccione, B.; Cho, C.H.; Van Vugt, L.K.; Agarwal, R. All-optical active switching in individual semiconductor nanowires. Nat. Nanotechnol. 2012, 7, 640–645. [Google Scholar] [CrossRef]
- Lu, H.; Liu, X.; Wang, L.; Gong, Y.; Mao, D. Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator. Opt. Express 2011, 19, 2910–2915. [Google Scholar] [CrossRef]
- Karapetyan, H.; Xia, J.; Hücker, M.; Gu, G.D.; Tranquada, J.M.; Fejer, M.M.; Kapitulnik, A. Evidence of chiral order in the charge-ordered phase of superconducting La1.875Ba0.125CuO4 single crystals using polar Kerr-effect measurements. Phys. Rev. Lett. 2014, 112, 047003. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Chen, H.; Sun, L.; Wang, J.; Xu, F.; Du, C.; Zhu, K.; Liu, Y. Effective electro-optic coefficient of (1–x)Pb (Zn1/3Nb2/3) O3–xPbTiO3 single crystals. Cryst. Res. Technol. 2012, 47, 610–614. [Google Scholar] [CrossRef]
- Vincenti, M.A.; De Ceglia, D.; Ciattoni, A.; Scalora, M. Singularity-driven second-and third-harmonic generation at ε-near-zero crossing points. Phys. Rev. A 2011, 84, 063826. [Google Scholar] [CrossRef]
- Weigelin, B.; Bakker, G.J.; Friedl, P. Third harmonic generation microscopy of cells and tissue organization. J. Cell Sci. 2016, 129, 245–255. [Google Scholar] [CrossRef]
- Youngblood, N.; Peng, R.; Nemilentsau, A.; Low, T.; Li, M. Layer-tunable third-harmonic generation in multilayer black phosphorus. ACS Photonics 2017, 4, 8–14. [Google Scholar] [CrossRef]
- Li, G.; Chen, S.; Pholchai, N.; Reineke, B.; Wong, P.W.H.; Pun, E.Y.B.; Cheah, K.W.; Zentgraf, T.; Zhang, S. Continuous control of the nonlinearity phase for harmonic generations. Nat. Mater. 2015, 14, 607–612. [Google Scholar] [CrossRef]
- Rostami, H.; Polini, M. Theory of third-harmonic generation in graphene: A diagrammatic approach. Phys. Rev. B 2016, 93, 161411. [Google Scholar] [CrossRef]
- Seka, W.; Jacobs, S.D.; Rizzo, J.E.; Boni, R.; Craxton, R.S. Demonstration of high efficiency third harmonic conversion of high power Nd-glass laser radiation. Opt. Commun. 1980, 34, 469–473. [Google Scholar] [CrossRef]
- Xu, L.; Saerens, G.; Timofeeva, M.; Smirnova, D.A.; Volkovskaya, I.; Lysevych, M.; Camacho-Morales, R.; Cai, M.; Zangeneh Kamali, K.; Huang, L.; et al. Forward and backward switching of nonlinear unidirectional emission from GaAs nanoantennas. ACS Nano 2019, 14, 1379–1389. [Google Scholar] [CrossRef]
- Marino, G.; Gigli, C.; Rocco, D.; Lemaître, A.; Favero, I.; De Angelis, C.; Leo, G. Zero-order second harmonic generation from AlGaAs-on-insulator metasurfaces. ACS Photonics 2019, 6, 1226–1231. [Google Scholar] [CrossRef]
- Anthur, A.P.; Zhang, H.; Paniagua-Dominguez, R.; Kalashnikov, D.A.; Ha, S.T.; Maß, T.W.; Kuznetsov, A.I.; Krivitsky, L. Continuous wave second harmonic generation enabled by quasi-bound-states in the continuum on gallium phosphide metasurfaces. Nano Lett. 2020, 20, 8745–8751. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Wu, Y.; Dang, Z.; Zeng, C.; Qi, X.; Guo, G.; Ren, X.; Xia, J. Strongly enhanced second harmonic generation in a thin film lithium niobate heterostructure cavity. Phys. Rev. Lett. 2021, 127, 153901. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Xie, F.; Chen, W.; Chen, J.; Wu, W.; Liu, W.; Chen, Y.; Cai, W.; Ren, M.; Xu, J. Nonlinear lithium niobate metasurfaces for second harmonic generation. Laser Photonics Rev. 2021, 15, 2000521. [Google Scholar] [CrossRef]
- Camacho-Morales, R.; Rahmani, M.; Kruk, S.; Wang, L.; Xu, L.; Smirnova, D.A.; Solntsev, A.S.; Miroshnichenko, A.; Tan, H.H.; Karouta, F.; et al. Nonlinear generation of vector beams from AlGaAs nanoantennas. Nano Lett. 2016, 16, 7191–7197. [Google Scholar] [CrossRef]
- Zhao, Y.; Jia, W.; Wang, X.J.; Dong, Y.; Fang, H.H.; Yang, Y.; Sun, H.B. Second-Harmonic Generation in Strained Silicon Metasurfaces. Adv. Photonics Res. 2022, 3, 2200157. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, L.; Chen, F. Recent advances in femtosecond laser processing of LiNbO3 crystals for photonic applications. Laser Photonics Rev. 2020, 14, 1900407. [Google Scholar] [CrossRef]
- Wang, F.; Kang, X.; Liang, L.; Song, W.; Sun, D.; Wang, J.; Liu, H.; Sang, Y. Yb sensitized near-stoichiometric Er: LiNbO3 single crystal: A matrix for optical communication and up-conversion emission. Cryst. Growth Des. 2018, 18, 1495–1500. [Google Scholar] [CrossRef]
- Li, L.; Nie, W.; Li, Z.; Lu, Q.; Romero, C.; Vazquez de Aldana, J.R.; Chen, F. All-laser-micromachining of ridge waveguides in LiNbO3 crystal for mid-infrared band applications. Sci. Rep. 2017, 7, 7034. [Google Scholar] [CrossRef]
- Kwak, C.H.; Kim, G.Y.; Javidi, B. Volume holographic optical encryption and decryption in photorefractive LiNbO3: Fe crystal. Opt. Commun. 2019, 437, 95–103. [Google Scholar] [CrossRef]
- Lu, Y.L.; Mao, L.; Ming, N.B. Green and violet light generation in LiNbO3 optical superlattice through quasiphase matching. Appl. Phys. Lett. 1994, 64, 3092–3094. [Google Scholar] [CrossRef]
- Mizuuchi, K.; Yamamoto, K. Second-harmonic generation in domain-inverted grating induced by focused ion beam. Opt. Rev. 1994, 1, 100–102. [Google Scholar] [CrossRef]
- Wang, C.; Xiong, X.; Andrade, N.; Venkataraman, V.; Ren, X.F.; Guo, G.C.; Lončar, M. Second harmonic generation in nano-structured thin-film lithium niobate waveguides. Opt. Express 2017, 25, 6963–6973. [Google Scholar] [CrossRef] [PubMed]
- Li, G.C.; Lei, D.; Qiu, M.; Jin, W.; Lan, S.; Zayats, A.V. Light-induced symmetry breaking for enhancing second-harmonic generation from an ultrathin plasmonic nanocavity. Nat. Commun. 2021, 12, 4326. [Google Scholar] [CrossRef]
- Ye, F.; Yu, Y.; Xi, X.; Sun, X. Second-Harmonic Generation in Etchless Lithium Niobate Nanophotonic Waveguides with Bound States in the Continuum. Laser Photonics Rev. 2022, 16, 2100429. [Google Scholar] [CrossRef]
- Zheng, Z.; Xu, L.; Huang, L.; Smirnova, D.; Hong, P.; Ying, C.; Rahmani, M. Boosting second-harmonic generation in the LiNbO3 metasurface using high-Q guided resonances and bound states in the continuum. Phys. Rev. B 2022, 106, 125411. [Google Scholar] [CrossRef]
- Fedotova, A.; Younesi, M.; Sautter, J.; Vaskin, A.; Löchner, F.J.; Steinert, M.; Geiss, R.; Pertsch, T.; Staude, I.; Setzpfandt, F. Second-harmonic generation in resonant nonlinear metasurfaces based on lithium niobate. Nano Lett. 2020, 20, 8608–8614. [Google Scholar] [CrossRef]
- Xu, L.; Xu, C.; Sun, H.; Zeng, T.; Zhang, J.; Zhao, H. Self-Induced Second-Harmonic and Sum-Frequency Generation from Interfacial Engineered Er3+/Fe3+ Doped LiNbO3 Single Crystal via Femtosecond Laser Ablation. ACS Photonics 2018, 5, 4463–4468. [Google Scholar] [CrossRef]
- De Abajo, F.G. Colloquium: Light scattering by particle and hole arrays. Rev. Mod. Phys. 2007, 79, 1267. [Google Scholar] [CrossRef]
- Søndergaard, T.; Novikov, S.M.; Holmgaard, T.; Eriksen, R.L.; Beermann, J.; Han, Z.; Pedersen, K.; Bozhevolnyi, S.I. Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves. Nat. Commun. 2012, 3, 969. [Google Scholar] [CrossRef]
- Mupparapu, R.; Vynck, K.; Svensson, T.; Burresi, M.; Wiersma, D.S. Path length enhancement in disordered media for increased absorption. Opt. Express 2015, 23, A1472–A1484. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, J.; Zhao, H.; Xu, C. Controllable photoinduced scattering and optimized light emission intensity in Nd3+ doped (Pb,La)(Zr,Ti)O3 perovskite ceramics. RSC Adv. 2017, 7, 47165–47169. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, J.; Zhao, H.; Sun, H.; Xu, C. Enhanced photoluminescence intensity by modifying the surface nanostructure of Nd3+-doped (Pb,La)(Zr,Ti)O3 ceramics. Opt. Lett. 2017, 42, 3303–3306. [Google Scholar] [CrossRef]
- Zhao, J.; Rüsing, M.; Javid, U.A.; Ling, J.; Li, M.; Lin, Q.; Mookherjea, S. Shallow-etched thin-film lithium niobate waveguides for highly-efficient second-harmonic generation. Opt. Express 2020, 28, 19669–19682. [Google Scholar] [CrossRef] [PubMed]
- Kuo, P.S.; Bravo-Abad, J.; Solomon, G.S. Second-harmonic generation using-quasi-phasematching in a GaAs whispering-gallery-mode microcavity. Nat. Commun. 2014, 5, 3109. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Huang, Z.; Sui, Z.; Chen, H.; Zhang, X.; Huang, W.; Guan, H.; Qiu, W.; Dong, J.; Zhu, W.; et al. Optical anapole mode in nanostructured lithium niobate for enhancing second harmonic generation. Nanophotonics 2020, 9, 3575–3585. [Google Scholar] [CrossRef]
- Wang, C.; Li, Z.; Kim, M.H.; Xiong, X.; Ren, X.F.; Guo, G.C.; Yu, N.; Lončar, M. Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides. Nat. Commun. 2017, 8, 2098. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.Q.; Zhang, C.; Hu, C.Y.; Liu, R.J.; Li, Z.Y. High-efficiency broadband high-harmonic generation from a single quasi-phase-matching nonlinear crystal. Phys. Rev. Lett. 2015, 115, 083902. [Google Scholar] [CrossRef]
- Lin, J.; Yao, N.; Hao, Z.; Zhang, J.; Mao, W.; Wang, M.; Chu, W.; Wu, R.; Fang, Z.; Qiao, L.; et al. Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator. Phys. Rev. Lett. 2019, 122, 173903. [Google Scholar] [CrossRef]
- Zelmon, D.E.; Small, D.L.; Jundt, D. Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol.% magnesium oxide-doped lithium niobite. J. Opt. Soc. Am. B Opt. Phys. 1997, 14, 3319–3322. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, C.; Wu, H.; He, Y.; Xu, L. Efficient Second- and Third-Harmonic Generations in Er3+/Fe2+-Doped Lithium Niobate Single Crystal with Engineered Surficial Cylindrical Hole Arrays. Nanomaterials 2023, 13, 1639. https://doi.org/10.3390/nano13101639
Xu C, Wu H, He Y, Xu L. Efficient Second- and Third-Harmonic Generations in Er3+/Fe2+-Doped Lithium Niobate Single Crystal with Engineered Surficial Cylindrical Hole Arrays. Nanomaterials. 2023; 13(10):1639. https://doi.org/10.3390/nano13101639
Chicago/Turabian StyleXu, Caixia, Hongli Wu, Yanwei He, and Long Xu. 2023. "Efficient Second- and Third-Harmonic Generations in Er3+/Fe2+-Doped Lithium Niobate Single Crystal with Engineered Surficial Cylindrical Hole Arrays" Nanomaterials 13, no. 10: 1639. https://doi.org/10.3390/nano13101639
APA StyleXu, C., Wu, H., He, Y., & Xu, L. (2023). Efficient Second- and Third-Harmonic Generations in Er3+/Fe2+-Doped Lithium Niobate Single Crystal with Engineered Surficial Cylindrical Hole Arrays. Nanomaterials, 13(10), 1639. https://doi.org/10.3390/nano13101639