Nanorod-like Structure of ZnO Nanoparticles and Zn8O8 Clusters Using 4-Dimethylamino Benzaldehyde Liquid to Study the Physicochemical and Antimicrobial Properties of Pathogenic Bacteria
Abstract
:1. Introduction
2. Experimental Details
2.1. Materials
2.2. Synthesis of the ZnO Nanoparticles
2.3. Synthesis of the ZnO:4DB Nanoparticles
2.4. Materials Characterization
2.5. Computational Analysis
2.6. Antibacterial Assay
3. Results and Discussion
3.1. Growth Mechanism
3.2. Structural Characterization
3.3. Morphology and Chemical Composition Analysis
3.4. UV–Vis NIR Spectroscopic Analysis
3.5. Photoluminescence Spectroscopic Analysis
3.6. Computational Studies on the Zn8O8 and Zn8O8:DB Clusters
3.6.1. The Structures of the Zn8O8 and Zn8O8:4DB Clusters
3.6.2. HOMO–LUMO Analysis
3.6.3. Calculation of Ionization Energy (I), Electron Affinity (A), Global Hardness (η), Chemical Potential (σ), Global Electrophilicity Index (ω) and Dipole Moment (μ)
3.6.4. Non-Linear Optical Properties
3.6.5. Thermodynamic Properties
3.6.6. Antimicrobial Activity of the Synthesized ZnO Nanoparticles ANTIBACTERIAL Assay
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chatterjee, A.P.; Mitra, P.; Mukhopadhyay, A.K. Chemically deposited zinc oxide thin film gas sensor. J. Mater. Sci. 1999, 34, 4225–4231. [Google Scholar] [CrossRef]
- Roy, V.A.L.; Djurisic, A.B.; Chan, W.K.; Gao, J.; Lui, H.F.; Surya, C. Luminescent and structural properties of ZnO nanorods prepared under different conditions. Appl. Phys. Lett. 2003, 83, 141–143. [Google Scholar] [CrossRef] [Green Version]
- Klingshirn, C. The luminescence of ZnO under high one- and two-quantum excitation. Status Solidi B 1975, 71, 547–556. [Google Scholar] [CrossRef]
- Xia, C.; Wang, N.; Lidong, L.; Lin, G. Synthesis and characterization of waxberry -like microstructures ZnO for biosensors. Sens. Actuators B Chem. 2008, 129, 268–273. [Google Scholar] [CrossRef]
- Chan, Y.; Bagnall, D.M.; Koh, H.; Park, K.; Hiraga, K.; Zhu, Z.; Yao, T. Plasma assisted molecular beam epitaxy of ZnO on c -plane sapphire: Growth and characterization. J. Appl. Phys. 1998, 84, 3912–3918. [Google Scholar] [CrossRef]
- Kotrange, H.; Najda, A.; Bains, A.; Gruszecki, R.; Chawla, P.; Tosif, M.M. Metal and metal oxide nanoparticle as a novel antibiotic carrier for the direct delivery of antibiotics. Int. J. Mol. Sci. 2021, 22, 9596. [Google Scholar] [CrossRef]
- Chawla, P.; Kumar, N.; Bains, A.; Dhull, S.B.; Kumar, M.; Kaushik, R.; Punia, S. Gum arabic capped copper nanoparticles: Synthesis, characterization, and applications. Int. J. Biol. Macromol. 2020, 146, 232–242. [Google Scholar] [CrossRef]
- Sheng, X.L.; Zhao, Y.; Zhai, J. Development and application of ZnO based photo-anode in dye sensitized solar cells. Prog. Chem. 2007, 19, 59–65. [Google Scholar]
- Yue, H.Y.; Fei, W.D.; Li, Z.J.; Wang, L.D. Sol–gel process of ZnO and ZnAl2O4 coated aluminum borate whiskers. J. Sol-Gel Sci. Technol. 2007, 44, 259–262. [Google Scholar] [CrossRef]
- Sergey, V.; Dmitriy, G.; Burmistrov, E.; Serov, D.A.; Rebezov, M.B.; Semenova, A.A.; Lisitsyn, A.B. A mini review of antibacterial properties of ZnO nanoparticles. Front. Phys. 2021, 9, 641481. [Google Scholar]
- Du, H.; Yue, M.; Huang, X.; Duan, G.; Yang, Z.; Huang, W.; Shenand, W.; Yin, X. Preparation, application and enhancement dyeing properties of ZnO nanoparticles in silk fabrics dyed with natural dyes. Nanomaterials 2022, 12, 3953. [Google Scholar] [CrossRef] [PubMed]
- Pascariu, P.; Homocianu, M. ZnO-based ceramic nanofibers: Preparation, properties and applications. Ceram. Int. 2019, 45, 11158–11173. [Google Scholar] [CrossRef]
- Vayssieres, L. Growth of Arrayed nanorods and nanowires of ZnO from Aqueous solutions. Materials 2003, 15, 464–466. [Google Scholar] [CrossRef]
- Vayssieres, L.; Keis, K.; Hagfeldt, A.; Lindquist, S.E. Three-dimensional array of highly oriented crystalline ZnO Microtubes. Chem. Mater. 2001, 13, 4395–4398. [Google Scholar] [CrossRef]
- Saeed, T.; Brien, P.O. Deposition and characterization of ZnO thin films grown by chemical bath deposition. Thin Solid Films 1995, 271, 35–38. [Google Scholar] [CrossRef]
- Brien, P.O.; Saeed, T.; Knowles, J. Speciation and the nature of ZnO thin films from chemical bath deposition. J. Mater. Chem. 1996, 6, 1135–1139. [Google Scholar] [CrossRef]
- Gao, X.; Li, X.; Yu, W. Flowerlike ZnO nanostructures via hexamethylenetetramine-assisted thermolysis of zinc-ethylenediamine complex. J. Phys. Chem. B 2005, 109, 1155–1161. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, R.; Fuchs, T.; Niesen, T.P.; Bill, J.; Aldinger, F. Influence of PMAA-graft-PEO copolymers on the formation of thin ZnO films from aqueous solutions. Surf. Interface Anal. 2002, 34, 708–711. [Google Scholar] [CrossRef]
- Taubert, A.; Palms, D.; Piccini, M.T.; Weiss, O.; Batchelder, D.N. Polymer-assisted control of particle morphology and particle size of zinc oxide precipitated from aqueous solution. Chem. Mater. 2002, 14, 2594–2601. [Google Scholar] [CrossRef]
- Tian, Z.R.; Voigt, J.A.; Liu, J.; Mckenzie, B.; Mcdermott, M.J. Biomimetic arrays of oriented helical ZnO nanorods and Columns. J. Am. Chem. Soc. 2002, 124, 12954–12955. [Google Scholar] [CrossRef]
- Tian, Z.R.; Voigt, J.A.; Liu, J.; McKenzie, B.; Mcdermott, M.J.; Rodrigues, M.A.; Konishi, H.; Xu, H. Complex and oriented ZnO nanostructures. Nat. Mater. 2003, 2, 821–826. [Google Scholar] [CrossRef] [PubMed]
- Imai, H.; Iwai, S.; Yamabi, S. Phosphate-mediated ZnO Nanosheets with a Mosaic Structure. Chem. Lett. 2004, 33, 768–769. [Google Scholar] [CrossRef]
- Yamabi, S.; Yahiro, J.; Iwai, S.; Imai, H. Formation of cellular films consisting of wurtzite-type zinc oxide nanosheets by mediation of phosphate anions. Thin Solid Films 2005, 489, 23–30. [Google Scholar] [CrossRef]
- Yoshida, T.; Pauporte, T.; Lincot, D.; Oekermann, T.; Minoura, H. Cathodic electrodeposition of ZnO/eosin Y hybrid thin films fromo-saturated aqueous solution of ZnCl2 and eosin Y. J. Electrochem. Soc. 2003, 150, C608–C615. [Google Scholar] [CrossRef]
- Oekermann, T.; Yoshida, T.; Minoura, H.; Wijayantha, K.G.U.; Peter, L.M. Electrochemical Self-Assembly of CuSCN/4-cyano-4’-(N’-Methyl)stilbazolium hybrid thin films. J. Phys. Chem. B 2004, 108, 8364–8370. [Google Scholar] [CrossRef]
- Yoshida, T.; Terada, K.; Schlettwein, D.; Oekermann, T.; Sugiura, T.; Minoura, H. Electrochemical self-assembly of nanoporous ZnO/Eosin Y thin films and their sensitized photoelectrochemical performance. Adv. Mater. 2000, 12, 1214–1217. [Google Scholar] [CrossRef]
- Yazicilar, T.K.; Yilmat, V.T.; Olmez, H. Synthesis and characterization of p-dimethylamino benzaldehyde Complexes of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II)Synth. React. Inorg. Met-Org. Chem. 1997, 27, 825–833. [Google Scholar]
- Murugadoss, A.; Pasricha, R.; Chattopadhyay, A. Ascorbic acid as a mediator and template for assembling metallic nanoparticles. J. Colloid Interface Sci. 2007, 311, 303–310. [Google Scholar] [CrossRef]
- Richardson, J.J.; Lange, F.F. Controlling low temperature aqueous synthesis of ZnO2. A Novel continuous circulation reactor. Cryst. Growth Des. 2009, 9, 2576–2581. [Google Scholar]
- Gold, K.; Slay, B.; Knackstedt, M.; Gaharwar, A.K. Antimicrobial activity of metal and metal-oxide based nanoparticles. Adv. Therap. 2018, 1, 1700033. [Google Scholar] [CrossRef]
- Reber, A.C.; Khanna, S.N.; Hunjan, J.S.; Beltran, M.R. Rings, towers, cages of ZnO. Eur. Phys. J. D 2007, 43, 221–224. [Google Scholar] [CrossRef]
- Gaussian 09W Program; Gaussian Inc.: Wallingford, CT, USA, 2009.
- Huag, A.; Caro, J. Novel zinc oxide twins with perfect mirror symmetry by solvothermal synthesis method. Cryst. Eng. Commun. 2010, 12, 685–687. [Google Scholar]
- Rai, P.; Tripathy, S.K.; Park, N.H.; Joong, K.O.; Lee, I.H.; Yu, Y.T. Synthesis of violet light emitting single crystalline ZnO nanorods by using CTAB-assisted hydrothermal method. J. Mater. Sci. Mater. Electro. 2009, 20, 967–971. [Google Scholar] [CrossRef]
- Suryanarayaa, C.; Norton, M.G. X-ray Diffraction: A Practical Approach; Plenum Press: New York, NY, USA, 1998. [Google Scholar]
- Azam, A.; Arham, S.; Hamed, M.; Ansari, S.; Shafeeq, M.M.; Naqvi, A.H. Study of electrical properties of nickel doped SnO2 ceramic nanoparticles. J. Alloys Compd. 2010, 506, 237–242. [Google Scholar] [CrossRef]
- Yang, P.; Xiao, X.; Li, Z.; Ding, Y.; Qiang, P.; Tan, X.; Mai, W.; Lin, Z.; Wu, W.; Li, T.; et al. Hydrogenated ZnO core-Shell nanocables for flexible supercapacitors and self-powered systems. ACS Nano 2013, 7, 2617–2626. [Google Scholar] [CrossRef]
- Xiao, L.; Lie, S.H.; Hui, Z.; Bin, L.B. Optical properties of nanosized ZnO films prepared by sol-gel process. Trans. Nonferrous Met. Soc. 2007, 17, 814–817. [Google Scholar]
- Pankove, J.I. Optical Process in Semiconductors; Prentice-Hall: Hoboken, NJ, USA, 1971. [Google Scholar]
- Vanheusden, K.; Warren, W.L.; Seager, C.H.; Tallant, D.R.; Voigt, J.A.; Gnade, B.E. Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys. 1996, 79, 7983–7990. [Google Scholar] [CrossRef]
- Zhang, W.C.; Wu, X.L.; Chen, H.T.; Zhu, J.; Huang, G.S. An investigation of electrical current induced phase transformations in the NiPtSi/polysilicon system. J. Appl. Phys. 2008, 103, 093718–093722. [Google Scholar] [CrossRef]
- Fan, X.M.; Lian, J.S.; Zhao, L.; Liu, Y. Single violet luminescence emitted from ZnO films obtained by oxidation of Zn film on quartz glass. Appl. Surf. Sci. 2005, 252, 420–424. [Google Scholar] [CrossRef]
- Li, L.; Zhou, Z.; Wang, X.; Huang, W.; He, Y.; Yang, M. Phys. First-principles study of static polarizability, first and second hyperpolarizabilities of small-sized ZnO clusters. Chem. Chem. Phys. 2008, 10, 6829–6835. [Google Scholar] [CrossRef]
- Goldberg, A.; Halls, M.D.; Kung, P.; Liang, J.J. Density functional theory study of Al23, Al26 and Al92 clusters. J. Phys. B At. Mol. Opt. Phys. 2009, 42, 125103. [Google Scholar] [CrossRef]
- Rastogi, K.; Palafox, M.A.; Tanwar, R.P.; Mittal, L. 3,5-Difluorobenzonitrile: Ab initio calculations, FTIR and Raman spectra. Spectrochim. Acta A 2002, 58, 1989–1996. [Google Scholar] [CrossRef] [PubMed]
- Kleinman, D.A. Theory of second harmonic generation of Light. Phys. Rev. 1962, 128, 1761–1775. [Google Scholar] [CrossRef]
- Perera, D.C.; Rasaiah, J.C. Exchange functionals and basis sets for density functional theory studies of waters on selected ZnO Nanocluster Catalysts. ACS Omega 2022, 7, 12556–12569. [Google Scholar] [CrossRef] [PubMed]
- Nataliya, B.; Lucja, P.; Igor, I.; Grzegorz, N.; Marcin, J.; Ewa, J.; Stefan, J. ZnO size and shape effect on antibacterial activity and cytotoxicity profile. Sci. Rep. 2022, 12, 8148. [Google Scholar]
- Xie, Y.; He, Y.; Irwin, P.L.; Jin, T.; Shi, X. Antibacterial Activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microbiol. 2011, 77, 2325–2331. [Google Scholar] [CrossRef] [Green Version]
- Sawai, J. Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J. Microbiol. Methods 2003, 54, 177–182. [Google Scholar] [CrossRef]
- Tsurumi, N.; Tsuji, Y.; Masago, N.; Yoshizawa, K. Elucidation of adhesive interaction between the epoxy molding compound and Cu lead frames. ACS Omega 2021, 6, 34173–34184. [Google Scholar] [CrossRef]
- Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Haida, N.; Kaus, M.; Chuo Ann, L.; Mohd Bakhori, S.K.; Hasan, H.; Mohamad, D. Review on zinc oxide nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-Micro Lett 2015, 7, 219–242. [Google Scholar] [CrossRef] [Green Version]
- Samanta, P.K.; Mandal, A.K. Effect of Nanoparticles on Biodiversity of Soil and Water Microorganism Community. J. Tissue Sci. Eng. 2017, 8, 1. [Google Scholar] [CrossRef] [Green Version]
- Tolossa, W.K.; Shibeshi, P.T. Structural, optical and enhanced antibacterial activities of ZnO and (Co, Fe) co-doped ZnO nanoparticles by sol-gel combustion method. Chem. Phys. Lett. 2022, 795, 139519. [Google Scholar] [CrossRef]
Sample | Lattice Parameter Values (nm) | Atomic Packing Factor (c/a) | Volume (V; Å3) | Crystalline Size D (nm) | |
---|---|---|---|---|---|
a | c | ||||
Pure ZnO | 0.3257 | 0.5217 | 1.6014 | 47.9554 | 45 |
ZnO:4DB | 0.3255 | 0.5213 | 1.6012 | 47.8487 | 43 |
Standard values (JCPDS Card No: 36-1451) | 0.3249 | 0.5206 | 1.6023 |
Samples | Element | Atomic% |
---|---|---|
ZnO | O | 61.07 |
Zn | 38.93 | |
ZnO:4DB | O | 57.57 |
Zn | 42.43 |
Molecular Properties | Zn8O8 | Zn8O8:4DB |
---|---|---|
I (a.u.) | 0.1165 | 0.1107 |
A (a.u.) | 0.0840 | 0.0918 |
η (a.u.) | 0.0162 | 0.0094 |
σ (a.u.) | −0.1002 | −0.1013 |
ω (a.u.) | 0.3098 | 0.5422 |
μ (Debye) | 7.4989 | 5.3239 |
Components of Polarizability | Polarizability Calculated at B3LYP/6-311G(d, p) × 10−24 Esu | Components of Hyperpolarizability | Hyperpolarizability Calculated at B3LYP/6-311G(d, p) × 10−33 Esu | ||
---|---|---|---|---|---|
Zn8O8 | Zn8O8:4DB | Zn8O8 | Zn8O8:4DB | ||
αxx | 57.6498 | 131.898 | βxxx | −132,958.4546 | −466,939.2138 |
αxy | 0.3525 | −33.1547 | βxxy | −35,765.0199 | 529,810.8661 |
αyy | 58.1952 | 94.1920 | βxyy | 54,938.1812 | −390,712.8298 |
αxz | 0.00281 | 13.1502 | βyyy | −101,508.2113 | 302,165.4907 |
αyz | 0.00417 | 1.9488 | βxxz | −10.7187 | −26,820.01052 |
αzz | 4.5323 | 14.0905 | βxyz | 4.3835 | 24,730.43081 |
αtot | 40.1698 | 80.0811 | βyyz | −2.9658 | −20,203.86439 |
∆α | 53.4573 | 119.0966 | βxzz | −19.6103 | −3073.7264 |
βyzz | −34.4561 | 1886.9311 | |||
βzzz | −0.03887 | −95.8616 | |||
βtot | 157,935.5078 | 1,199,485.513 |
Parameters | Zn8O8 | Zn8O8:4DB |
---|---|---|
Zero-point vibrational energy (Kcal/Mol) | 44.29109 | 157.49130 |
Rotational constants (GHz) | ||
A | 0.35044 | 0.15856 |
B | 0.18725 | 0.05579 |
C | 0.12204 | 0.04164 |
Rotational temperature(K) | ||
A | 0.01682 | 0.00761 |
B | 0.00899 | 0.00268 |
C | 0.00586 | 0.00200 |
Thermal energy (KCal/Mol) | ||
Total | 46.332 | 164.466 |
Translation | 0.889 | 0.889 |
Rotational | 0.889 | 0.889 |
Vibrational | 44.554 | 162.688 |
Molar capacity at constant volume (Cal/Mol-Kelvin) | ||
Total | 9.430 | 43.655 |
Translation | 2.981 | 2.981 |
Rotational | 2.981 | 2.981 |
Vibrational | 3.468 | 37.694 |
Entropy (Cal/Mol-Kelvin) | ||
Total | 81.327 | 115.186 |
Translation | 45.248 | 45.873 |
Rotational | 34.950 | 38.009 |
Vibrational | 1.128 | 31.303 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramesh, S.; Karthikeyan, C.; Hajahameed, A.S.; Afsar, N.; Sivasamy, A.; Lee, Y.-J.; Kim, J.-H.; Kim, H.S. Nanorod-like Structure of ZnO Nanoparticles and Zn8O8 Clusters Using 4-Dimethylamino Benzaldehyde Liquid to Study the Physicochemical and Antimicrobial Properties of Pathogenic Bacteria. Nanomaterials 2023, 13, 166. https://doi.org/10.3390/nano13010166
Ramesh S, Karthikeyan C, Hajahameed AS, Afsar N, Sivasamy A, Lee Y-J, Kim J-H, Kim HS. Nanorod-like Structure of ZnO Nanoparticles and Zn8O8 Clusters Using 4-Dimethylamino Benzaldehyde Liquid to Study the Physicochemical and Antimicrobial Properties of Pathogenic Bacteria. Nanomaterials. 2023; 13(1):166. https://doi.org/10.3390/nano13010166
Chicago/Turabian StyleRamesh, Sivalingam, C. Karthikeyan, A. S. Hajahameed, N. Afsar, Arumugam Sivasamy, Young-Jun Lee, Joo-Hyung Kim, and Heung Soo Kim. 2023. "Nanorod-like Structure of ZnO Nanoparticles and Zn8O8 Clusters Using 4-Dimethylamino Benzaldehyde Liquid to Study the Physicochemical and Antimicrobial Properties of Pathogenic Bacteria" Nanomaterials 13, no. 1: 166. https://doi.org/10.3390/nano13010166
APA StyleRamesh, S., Karthikeyan, C., Hajahameed, A. S., Afsar, N., Sivasamy, A., Lee, Y.-J., Kim, J.-H., & Kim, H. S. (2023). Nanorod-like Structure of ZnO Nanoparticles and Zn8O8 Clusters Using 4-Dimethylamino Benzaldehyde Liquid to Study the Physicochemical and Antimicrobial Properties of Pathogenic Bacteria. Nanomaterials, 13(1), 166. https://doi.org/10.3390/nano13010166