Antifouling Mortars for Underwater Restoration
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
In-Situ Experimentation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Davidde, B. Underwater archaeological parks: A new perspective and a challenge for conservation—The Italian panorama. Int. J. Naut. Archaeol. 2002, 31, 83–88. [Google Scholar]
- Aloise, P.; Ricca, M.; La Russa, M.F.; Ruffolo, S.A.; Belfiore, C.M.; Padeletti, G.; Crisci, G.M. Diagnostic analysis of stone materials from underwater excavations: The case study of the Roman archaeological site of Baia (Naples, Italy). Appl. Phys. A Mater. Sci. Processing 2014, 114, 655–662. [Google Scholar] [CrossRef]
- Hamilton, D.L. Basic Methods of Conserving Underwater Archaeological Material Culture; Legacy Resource Management Program, U.S. Department of Defense: Washington, DC, USA, 1996.
- Crisci, G.M.; La Russa, M.F.; Macchione, M.; Malagodi, M.; Palermo, A.M.; Ruffolo, S.A. Study of archaeological underwater finds: Deterioration and conservation. Appl. Phys. A Mater. Sci. Processing 2010, 100, 855–863. [Google Scholar] [CrossRef]
- Gregory, D.; Jensen, P.; Strætkvern, K. Conservation and in situ preservation of wooden shipwrecks from marine environments. J. Cult. Herit. 2012, 13 (Suppl. S3), S139–S148. [Google Scholar] [CrossRef]
- Bruno, F.; Muzzupappa, M.; Barbieri, L.; Gallo, A.; Ritacco, G.; Lagudi, A.; La Russa, M.F.; Ruffolo, S.A.; Crisci, G.M.; Ricca, M.; et al. The CoMAS project: New materials and tools for improving the in situ documentation, restoration, and conservation of underwater archaeological remains. Mar. Technol. Soc. J. 2016, 50, 108–118. [Google Scholar] [CrossRef]
- Ricca, M.; Cámara, B.; Fort, R.; Álvarez de Buergo, M.; Randazzo, L.; Davidde Petriaggi, B.; La Russa, M.F. Definition of analytical cleaning procedures for archaeological pottery from underwater environments: The case study of samples from Baia (Naples, South Italy). Mater. Des. 2021, 197, 109278. [Google Scholar] [CrossRef]
- La Russa, M.F.; Ruffolo, S.A.; Ricca, M.; Ricci, S.; Davidde, B.; Barca, D.; Capristo, V. A multidisciplinary approach to the study of underwater artefacts: The case of a Tritone Barbato marble statue (Grotta Azzurra, Island of Capri, Naples). Period. Di Mineral. 2013, 82, 101–111. [Google Scholar]
- Ricci, S.; Sacco Perasso, C.; Antonelli, F.; Davidde Petriaggi, B. Marine bivalves colonizing Roman artefacts recovered in the Gulf of Pozzuoli and in the Blue Grotto in Capri (Naples, Italy): Boring and nestling species. Int. Biodeterior. Biodegrad. 2015, 98, 89–100. [Google Scholar] [CrossRef]
- Ricca, M.; La Russa, M.F.; Ruffolo, S.A.; Davidde, B.; Barca, D.; Crisci, G.M. Mosaic marble tesserae from the underwater archaeological site of Baia (Naples, Italy): Determination of the provenance. Eur. J. Mineral. 2014, 26, 323–331. [Google Scholar] [CrossRef]
- Cámara, B.; de Buergo, M.Á.; Bethencourt, M.; Fernández-Montblanc, T.; La Russa, M.F.; Ricca, M.; Fort, R. Biodeterioration of marble in an underwater environment. Sci. Total Environ. 2017, 609, 109–122. [Google Scholar] [CrossRef]
- Randazzo, L.; Ricca, M.; Ruffolo, S.; Aquino, M.; Petriaggi, B.D.; Enei, F.; La Russa, M.F. An integrated analytical approach to define the compositional and textural features of mortars used in the underwater archaeological site of castrum novum (Santa Marinella, Rome, Italy). Minerals 2019, 9, 268. [Google Scholar] [CrossRef] [Green Version]
- Ricca, M.; La Russa, M.F. Challenges for the protection of underwater cultural heritage (UCH), from waterlogged and weathered stone materials to conservation strategies: An overview. Heritage 2020, 3, 24. [Google Scholar] [CrossRef]
- Wahl, M. Marine epibioses: 1 Fouling and antifouling: Some basic aspects. Mar. Ecol. Prog. Ser. 1989, 58, 175–189. [Google Scholar] [CrossRef] [Green Version]
- Dabral, K.; Selvaraj, R.; Simon, J. Principles and Experimental Methods for Underwater Concrete Formulations. IOSR J. Mech. Civ. Eng. (IOSR-JMCE) 2016, 13, 31–34. [Google Scholar] [CrossRef]
- Sierra-Fernandez, A.; De la Rosa-García, S.C.; Yañez-Macías, R.; Guerrero-Sanchez, C.; Gomez-Villalba, L.S.; Gómez-Cornelio, S.; Quintana, P. Sol-gel synthesis of Mg(OH)2 and Ca(OH)2 nanoparticles: A comparative study of their antifungal activity in partially quaternized p(DMAEMA) nanocomposite films. J. Sol-Gel Sci. Technol. 2019, 89, 310–321. [Google Scholar] [CrossRef]
- La Russa, M.F.; Ricca, M.; Belfiore, C.M.; Ruffolo, S.A.; Ballester, M.B.; Crisci, G.M. The contribution of earth sciences to the preservation of underwater archaeological stone materials: An analytical approach. Int. J. Conserv. Sci. 2015, 6, 335–348. [Google Scholar]
- Ruffolo, S.A.; Ricca, M.; Macchia, A.; La Russa, M.F. Antifouling coatings for underwater archaeological stone materials. Prog. Org. Coat. 2017, 104, 64–71. [Google Scholar] [CrossRef]
- Sierra-Fernandez, A.; De La Rosa-García, S.C.; Gomez-Villalba, L.S.; Gómez-Cornelio, S.; Rabanal, M.E.; Fort, R.; Quintana, P. Synthesis, Photocatalytic, and Antifungal Properties of MgO, ZnO and Zn/Mg Oxide Nanoparticles for the Protection of Calcareous Stone Heritage. ACS Appl. Mater. Interfaces 2017, 9, 24873–24886. [Google Scholar] [CrossRef]
- Randazzo, L.; Ricca, M.; Pellegrino, D.; La Russa, D.; Marrone, A.; Macchia, A.; Rivaroli, L.; Enei, F.; La Russa, M.F. Anti-fouling additives for the consolidation of archaeological mortars in underwater environment: Efficacy tests performed on the apsidal fishpond of Castrum Novum (Rome, Italy). Int. J. Conserv. Sci. 2020, 11, 243–250. [Google Scholar]
- Dei, L.; Salvadori, B. Nanotechnology in cultural heritage conservation: Nanometric slaked lime saves architectonic and artistic surfaces from decay. J. Cult. Herit. 2006, 7, 110–115. [Google Scholar] [CrossRef]
- Castillo, I.F.; De Matteis, L.; Marquina, C.; Guillen, E.G.; de La Fuente, J.M.; Mitchell, S.G. Protection of 18th century paper using antimicrobial nano-magnesium oxide. Int. Biodeterior. Biodegrad. 2019, 141, 79–86. [Google Scholar] [CrossRef]
- He, Y.; Ingudam, S.; Reed, S.; Gehring, A.; Strobaugh, T.P.; Irwin, P. Study on the mechanism of antibacterial action of magnesium oxide nanoparticles against foodborne pathogens. J. Nanobiotechnol. 2016, 14, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Tang, Z.-X.; Fang, X.-J.; Zhang, Z.-L.; Zhou, T.; Zhang, X.-Y.; Shi, L.-E. Nanosize MgO as antibacterial agent: Preparation and characteristics. Braz. J. Chem. Eng. 2012, 29, 775–781. [Google Scholar] [CrossRef]
- Raghupathi, K.R.; Koodali, R.T.; Manna, A.C. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 2011, 27, 4020–4028. [Google Scholar] [CrossRef] [PubMed]
- Hajipour, M.J.; Fromm, K.M.; Ashkarran, A.A.; Jiménez de Aberasturi, D.; de Larramendi, I.R.; Rojo, T. Antibacterial properties of nanoparticles. Trends Biotechnol. 2012, 30, 499–511. [Google Scholar] [CrossRef] [Green Version]
- Enei, F.; Haack, M.L.; Nardi-Combescure, S.; Poccardi, G. Castrum Novum. Storia e Archeologia di una Colonia Romana nel Territorio di Santa Marinella; Quaderno 1: Santa Marinella, Italy, 2011. [Google Scholar]
- Desibio, L.; Enei, F.; Nardi-Combescure, S.; Poccardi, G.; Sia, V.; Levanto, M.T.; Squaglia, A. The CastrumNovum Project: History and Archaeology of a Roman Colony (Santa Marinella, Rome, Italy). Int. J. Archaeol. Archaeol. Sci. 2015, 3, 62–75. [Google Scholar] [CrossRef]
- EN 1926; Natural Stone Test Methods Determination of Uniaxial Compressive Strength. Standards Policy and Strategy Committee: London, UK, 2006.
- EN 12372; Natural Stone Test Methods Determination of Flexural Strength under Concentrated Load. Standards Policy and Strategy Committee: London, UK, 2006.
- ISO/CIE 11664-4:2019; Colours and Measurement of Light. CIE International Commission on Illumination: Vienna, Austria, 2019.
- Collins, T.J. ImageJ for microscopy. BioTechniques 2007, 43, 25–30. [Google Scholar] [CrossRef]
- Genestar, C.; Pons, C.; Más, A. Analytical characterization of ancient mortars from the archaeological Roman city of Pollentia (Balearic Islands, Spain). Anal. Chim. Acta 2006, 557, 373–379. [Google Scholar] [CrossRef]
- Schueremans, L.; Cizer, O.; Janssens, E.; Serre, G.; Van Balen, K. Characterization of repair mortars for the assessment of their compatibility in restoration projects: Research and practice. Constr. Build. Mater. 2011, 25, 4338–4350. [Google Scholar] [CrossRef]
- Frankeová, D.; Koudelková, V. Influence of ageing conditions on the mineralogical micro-character of natural hydraulic lime mortars. Constr. Build. Mater. 2020, 264, 120205. [Google Scholar] [CrossRef]
- Marty, N.; Grangeon, S.; Warmont, F.; Lerouge, C. Alteration of nanocrystalline calcium silicate hydrate (C-S-H) at pH 9.2 and room temperature: A combined mineralogical and chemical study. Mineral. Mag. 2015, 79, 437–458. [Google Scholar] [CrossRef] [Green Version]
- Morandeau, A.; Thiéry, M.; Dangla, P. Investigation of the carbonation mechanism of CH and C-S-H- in terms of kinetic, microstructure changes and moisture properties. Cem. Concr. Res. 2014, 56, 153–170. [Google Scholar] [CrossRef] [Green Version]
- Adams, J.E.; Kneller, A.W. Thermal Analysis of Medieval Mortars from Gothic Cathedrals in France (1988) in Engineering Geology of Ancient Works; Balkema: Rotterdam, The Netherlands, 1988; pp. 1019–1026. [Google Scholar]
- Biscontin, G.; Pellinzon Birelli, M.; Zendri, E. Characterization of binders employed in the manifacture of Venetian historical mortars. J. Cult. Herit. 2002, 3, 31–37. [Google Scholar] [CrossRef]
- Izzo, F.; Grifa, C.; Germinario, C.; Mercurio, M.; De Bonis, A.; Tomay, L.; Langella, A. Production technology of mortar-based building materials from the Arch of Trajan and the Roman Theatre in Benevento, Italy. Eur. Phys. J. Plus 2018, 133, 363. [Google Scholar] [CrossRef]
- Cizer, O.; Van Balen, K.; Van Gemert, D. Competition Between Hydration and Carbonation in Hydraulic Lime and Lime-Pozzolana Mortars. Adv. Mat. Res. 2010, 133–134, 241–246. [Google Scholar] [CrossRef]
Sample Code | Lab Experiment | In Situ Experiment | ||||
---|---|---|---|---|---|---|
Mechanical Test | Colorimetric Analysis | XRD | SEM/EDS | TG/DTA | Image Analysis | |
Size of Specimens (cm) | 16 × 16 × 4 | 10 × 5 × 0.8 | 10 × 5 × 0.8 (n = 16) | |||
SA | x (n = 6) | x (n = 1) | x | x | x | x |
VM | x (n = 6) | x (n = 1) | x | x | x | x |
SA/Mg | x (n = 6) | x (n = 1) | x | x | x | x |
VM/Mg | x (n = 6) | x (n = 1) | x | x | x | x |
DateTime D/M/Y | Temperature °C | pH | TDS g/L | SpCond mS/cm | Salinity ppt | Resistivity KOhm.cm | ORP mV | DO% % | DO Conc mg/L | Cond mS/cm |
---|---|---|---|---|---|---|---|---|---|---|
21/11/18 | 22.82 | 8.20 | 35.05 | 53.93 | 35.68 | 0.02 | 304.78 | 70.07 | 4.91 | 51.68 |
12/12/18 | 20.50 | 8.13 | 35.46 | 54.55 | 36.17 | 0.02 | 254.56 | 28.47 | 2.07 | 49.86 |
10/01/19 | 19.70 | 8.29 | 35.65 | 54.85 | 36.40 | 0.02 | 202.68 | 190.06 | 14.02 | 49.29 |
07/02/19 | 22.94 | 8.12 | 36.17 | 55.65 | 36.96 | 0.02 | 204.50 | 20.27 | 1.41 | 53.46 |
06/03/19 | 23.60 | 8.14 | 36.16 | 55.63 | 36.94 | 0.02 | 206.40 | 92.47 | 6.35 | 54.15 |
03/04/19 | 23.11 | 8.14 | 35.41 | 54.48 | 36.09 | 0.02 | 240.86 | 2.04 | 0.14 | 52.51 |
04/05/19 | 23.12 | 8.12 | 35.46 | 54.56 | 36.15 | 0.02 | 177.29 | 2.04 | 0.14 | 52.60 |
10/06/19 | 22.45 | 8.05 | 35.43 | 54.51 | 36.12 | 0.02 | 221.79 | 33.31 | 2.34 | 51.85 |
11/07/19 | 27.56 | 7.91 | 35.90 | 55.23 | 36.54 | 0.02 | 155.48 | 16.05 | 1.03 | 57.93 |
01/08/19 | 27.67 | 7.91 | 36.02 | 55.41 | 36.68 | 0.02 | 154.29 | 7.22 | 0.46 | 58.23 |
22/09/19 | 23.09 | 8.26 | 35.16 | 54.09 | 35.80 | 0.02 | 298.07 | 93.27 | 6.50 | 52.12 |
11/10/19 | 22.81 | 8.32 | 35.10 | 54.00 | 35.73 | 0.02 | 281.48 | 35.81 | 2.51 | 51.74 |
28/11/19 | 22.37 | 8.04 | 35.51 | 54.64 | 36.22 | 0.02 | 211.88 | 15.88 | 1.12 | 51.90 |
Flexural Strength 28 Days (MPa) | Uniaxial Compressive Strength 28 Days (MPa) | Uniaxial Compressive Strength 200 Days (MPa) | |
---|---|---|---|
SA | 2.4 ± 0.5 | 4.6 ± 0.9 | 4.8 ± 0.9 |
SA/Mg | 2.0 ± 0.1 | 3.8 ± 0.1 | 3.9 ± 0.1 |
VM | 3.8 ± 0.3 | 7.1 ± 0.8 | 7.5 ± 0.9 |
VM/Mg | 3.2 ± 0.3 | 5.5 ± 0.2 | 5.8 ± 0.2 |
SA * | n.a. | 1.88 | n.a. |
VM * | >1.5 | >8 | n.a. |
28 Days of Immersion | 200 Days of Immersion | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
L | a | b | L | a | b | ΔL* | Δa* | Δb* | ΔE | |
SA | 75.5 ± 2.2 | 0.4 ± 0.1 | 4.8 ± 0.8 | 76.6 ± 3.8 | 0.2 ± 0.1 | 5.0 ± 1.1 | 1.1 | −0.2 | 0.3 | 1.1 ± 0.4 |
VM | 80.8 ± 1.7 | 0.2 ± 0.1 | 5.1 ± 0.9 | 79.3 ± 2.9 | 0.1 ± 0.1 | 5.3 ± 1.5 | −1.5 | −0.1 | 0.2 | 1.5 ± 0.3 |
SA/Mg | 77.7 ± 2.5 | −0.1 ± 0.1 | 5.8 ± 0.7 | 78.2 ± 3.1 | 0.0 ± 0.1 | 5.3 ± 1.7 | 0.5 | 0.1 | −0.5 | 0.7 ± 0.3 |
VM/Mg | 76.9 ± 1.8 | −0.1 ± 0.1 | 5.5 ± 0.6 | 77.1 ± 2.7 | −0.1 ± 0.1 | 4.7 ± 1.9 | 0.2 | 0.0 | −0.8 | 0.8 ± 0.3 |
Sample Code | Cal | Qz | Anl | Lct | Cpx | Pl | Mca | Hl | LOAP |
---|---|---|---|---|---|---|---|---|---|
SA (Control test) | 33.0 | 5.0 | 3.1 | 7.2 | 16.7 | 3.3 | 0.1 | − | 31.6 |
SA 3 Months | 33.6 | 4.1 | 3.6 | 6.5 | 17.0 | 3.5 | 0.1 | tr | 31.5 |
SA 6 Months | 30.6 | 4.8 | 3.8 | 7.2 | 17.6 | 4.1 | 0.1 | 1.1 | 30.7 |
SA 12 Months | 33.4 | 5.6 | 4.3 | 7.4 | 18.1 | 6.2 | 0.1 | tr | 24.8 |
SA/Mg 3 Months | 33.5 | 4.7 | 3.7 | 7.3 | 18.3 | 3.4 | 0.2 | 0.22 | 28.6 |
SA/Mg 6 Months | 31.5 | 5.7 | 4.3 | 6.3 | 18.1 | 4.5 | 0.2 | 0.18 | 29.3 |
SA/Mg 12 Months | 28.4 | 4.9 | 3.9 | 6.9 | 18.5 | 3.9 | 0.2 | tr | 33.3 |
VM (Control test) | 31.5 | 13.0 | 4.4 | 8.4 | 19.4 | 6.7 | 0.1 | − | 16.0 |
VM 3 Months | 31.6 | 10.5 | 4.4 | 7.5 | 19.0 | 5.6 | 0.2 | 0.54 | 21.0 |
VM 6 Months | 31.7 | 5.0 | 4.4 | 7.4 | 18.6 | 4.6 | 0.2 | − | 28.2 |
VM/Mg 6 Months | 30.2 | 5.2 | 4.0 | 7.3 | 18.0 | 4.9 | 0.1 | tr | 30.2 |
Samples Code | Dehydration | Dehydration of Phyllosilicates and Decomposition of Organic Substance | Decomposition of Carbonates | Polymorphic Transformation and Sintering | R.M. (%) | Cal (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
40–200 °C | 200–600 °C | 600–850 °C | >850 °C | |||||||||||
ΔW (%) | DTG (°C) | DSC (a) (°C) | ΔW (%) | DTG (°C) | DSC (a,b) (°C) | ΔW (%) | DTG (°C) | DSC (a) (°C) | ΔW (%) | DTG (°C) | DSC (a,b) (°C) | |||
VM (Control test) | 2.36 | 99.4 | 97.3 a | 3.58 | 427.9 | 423.3 a | 11.32 | 780.4 | 772.4 a | 0.09 | - | 868 a | 82.65 | 25.70 |
VM (3 months) | 2.25 | 100.1 | 92.2 a | 4.12 | 432.1 | 421.1 a–567.0 a | 11.37 | 753.6 | 754.9 a | 0.94 | 897.2 | - | 81.32 | 25.81 |
VM (6 months) | 3.98 | 98.7 | 98.2 a | 7.03 | 436.5–561.5 | 423.0 a–553.1 a | 8.97 | 740.5 | 743.9 a | 1.14 | 926.9 | - | 78.88 | 20.36 |
VM/Mg (6 months) | 4.66 | 101.5 | 99.6 a | 7.73 | 440.5–535.5 | 430.1 a–536.6 a | 8.67 | 734.7 | 741.9 a | 1.28 | 928.8 | - | 77.66 | 19.68 |
SA (Control test) | 2.34 | 112.3 | 107.5 a | 4.23 | 441.7 | 447.8 a | 12.94 | 790.7 | 790.7 a | 0 | - | - | 80.49 | 29.37 |
SA (3 months) | 3.89 | 106.9 | 102.4 a | 8.08 | 450 | 413.0 a | 8.41 | 661.8–721.8 | 651.0 a–730.0 a | 1.83 | 973.4 | - | 77.79 | 19.09 |
SA (6 months) | 3.87 | 96.3 | 96.1 a | 7.68 | 442 | 444.9 a | 9.28 | 736.6 | 737.3 a | 1.8 | 902.6–1024.6 | - | 77.37 | 21.07 |
SA (12 months) | 4.4 | 108.3 | 98.7 a | 6.79 | 444.8 | 447.9 a | 8.89 | 725.7 | 735.4 a | 1.22 | 910.7 | - | 78.70 | 20.18 |
SA/Mg (3 months) | 4.18 | 106.7 | 110.4 a | 7.21 | 442.1–591.3 | 433.0 a–543.8 a | 9.83 | 758.6 | 612.0 a–759.8 a | 1.26 | 1057.3 | - | 77.52 | 22.31 |
SA/Mg (6 months) | 4.51 | 94.4 | 95.3 a | 7.2 | 432.8 | 422.8 a–547.5 a | 9.39 | 741 | 741.9 a | 1.05 | 913.4 | - | 77.85 | 21.32 |
SA/Mg (12 months) | 4.88 | 103.1 | 107.9 a | 7.19 | 441.7–591.9 | 432.8 a–526.1 a–584.8 a | 8.25 | 755 | 754.9 a | 1.19 | 961.5 | - | 78.49 | 18.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ricca, M.; Ruffolo, S.A.; La Russa, M.F.; Rispoli, C.; Grifa, C.; Sierra-Fernández, A.; Fort, R.; Randazzo, L. Antifouling Mortars for Underwater Restoration. Nanomaterials 2022, 12, 1498. https://doi.org/10.3390/nano12091498
Ricca M, Ruffolo SA, La Russa MF, Rispoli C, Grifa C, Sierra-Fernández A, Fort R, Randazzo L. Antifouling Mortars for Underwater Restoration. Nanomaterials. 2022; 12(9):1498. https://doi.org/10.3390/nano12091498
Chicago/Turabian StyleRicca, Michela, Silvestro Antonio Ruffolo, Mauro Francesco La Russa, Concetta Rispoli, Celestino Grifa, Aranzazu Sierra-Fernández, Rafael Fort, and Luciana Randazzo. 2022. "Antifouling Mortars for Underwater Restoration" Nanomaterials 12, no. 9: 1498. https://doi.org/10.3390/nano12091498
APA StyleRicca, M., Ruffolo, S. A., La Russa, M. F., Rispoli, C., Grifa, C., Sierra-Fernández, A., Fort, R., & Randazzo, L. (2022). Antifouling Mortars for Underwater Restoration. Nanomaterials, 12(9), 1498. https://doi.org/10.3390/nano12091498