Transverse Magnetoresistance Induced by the Nonuniformity of Superconductor
Abstract
1. Introduction
2. Experiment
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dobrovolskiy, O.V.; Hanefeld, M.; Zörb, M.; Huth, M.; Shklovskij, V.A. Interplay of flux guiding and Hall effect in Nb films with nanogrooves. Supercond. Sci. Technol. 2016, 29, 65009. [Google Scholar] [CrossRef]
- Shklovskij, V.A.; Dobrovolskiy, O.V. Influence of pointlike disorder on the guiding of vortices and the Hall effect in a washboard planar pinning potential. Phys. Rev. B 2006, 74, 104511. [Google Scholar] [CrossRef]
- Lv, Y.; Dong, Y.; Lu, D.; Tian, W.; Xu, Z.; Chen, W.; Zhou, X.; Yuan, J.; Jin, K.; Bao, S.; et al. Anomalous transverse resistance in 122-type iron-based superconductors. Sci. Rep. 2019, 9, 664. [Google Scholar] [CrossRef] [PubMed]
- Guryev, V.V.; Shavkin, S.V.; Kruglov, V.S.; Volkov, P.V. Superconducting transition of Nb–Ti tape studied by transverse voltage method. Phys. C Supercond. Appl. 2019, 567, 1353546. [Google Scholar] [CrossRef]
- Soroka, O.K.; Shklovskij, V.A.; Huth, M. Guiding of vortices under competing isotropic and anisotropic pinning conditions: Theory and experiment. Phys. Rev. B 2007, 76, 014504. [Google Scholar] [CrossRef]
- Wang, L.M.; Wang, C.Y.; Sou, U.C.; Yang, H.C.; Chang, L.J.; Redding, C.; Song, Y.; Dai, P.; Zhang, C. Longitudinal and transverse Hall resistivities in NaFe(1)-xCoxAs single crystals with x = 0.022 and 0.0205: Weak pinning and anomalous electrical transport properties. J. Phys. Condens. Matter 2013, 25, 395702. [Google Scholar] [CrossRef][Green Version]
- Erdin, S.; Lyuksyutov, I.F.; Pokrovsky, V.L.; Vinokur, V.M. Topological Textures in a Ferromagnet-Superconductor Bilayer. Phys. Rev. Lett. 2001, 88, 017001. [Google Scholar] [CrossRef]
- Emery, V.J.; Kivelson, S.A. Importance of phase fluctuations in superconductors with small superfluid density. Nature 1995, 374, 434–437. [Google Scholar] [CrossRef]
- Uemura, Y.J. Dynamic superconductivity responses in photoexcited optical conductivity and Nernst effect. Phys. Rev. Mater. 2019, 3, 104801. [Google Scholar] [CrossRef]
- Nakosai, S.; Tanaka, Y.; Nagaosa, N. Two-dimensional p-wave superconducting states with magnetic moments on a conventionals-wave superconductor. Phys. Rev. B 2013, 88, 180503(R). [Google Scholar] [CrossRef]
- Adamus, Z.; Cieplak, M.; Kończykowski, M.; Zhu, L.Y.; Chien, C.L. Influence of magnetic domain landscape on the flux dynamics in superconductor/ferromagnet bilayers. Phys. Rev. B 2016, 93, 054509. [Google Scholar] [CrossRef]
- Yang, Z.; Moshchalkov, V.V. Domain wall modulated superconductivity in Nb/Y3Fe5O12 hybrids. J. Appl. Phys. 2011, 109, 083908. [Google Scholar] [CrossRef]
- Shklovskii, V.A.; Soroka, A.K.; Soroka, A.A. Nonlinear dynamics of vortices pinned to unidirectional twins. J. Exp. Theor. Phys. 1999, 89, 1138–1153. [Google Scholar] [CrossRef]
- Sato, H.; Katase, T.; Kang, W.N.; Hiramatsu, H.; Kamiya, T.; Hosono, H. Anomalous scaling behavior in a mixed-state Hall effect of a cobalt-doped BaFe2As2 epitaxial film with a high critical current density over 1 MA/cm2. Phys. Rev. B 2013, 87, 064504. [Google Scholar] [CrossRef]
- Gheorghe, D.G.; Menghini, M.; Wijngaarden, R.J.; Raedts, S.; Silhanek, A.V.; Moshchalkov, V.V. Anisotropic avalanches and flux penetration in patterned superconductors. Phys. C Supercond. 2006, 437, 69–72. [Google Scholar] [CrossRef]
- Menghini, M.; Wijngaarden, R.J.; Silhanek, A.V.; Raedts, S.; Moshchalkov, V.V. Dendritic flux penetration in Pb films with a periodic array of antidots. Phys. Rev. B 2005, 71, 104506. [Google Scholar] [CrossRef]
- Silhanek, A.V.; Van Look, L.; Raedts, S.; Jonckheere, R.; Moshchalkov, V.V. Guided vortex motion in superconductors with a square antidot array. Phys. Rev. B 2003, 68, 214504. [Google Scholar] [CrossRef]
- Silhanek, A.; Van Look, L.; Raedts, S.; Jonckheere, R.; Moshchalkov, V. In-plane anisotropic vortex motion induced by a square array of antidots. Phys. C Supercond. 2004, 404, 340–344. [Google Scholar] [CrossRef]
- Villegas, J.E.; Sharoni, A.; Li, C.-P.; Schuller, I.K. Anomalous, hysteretic, transverse magnetoresistance in superconducting thin films with magnetic vortex arrays. Appl. Phys. Lett. 2009, 94, 252507. [Google Scholar] [CrossRef]
- Segal, A.; Karpovski, M.; Gerber, A. Inhomogeneity and transverse voltage in superconductors. Phys. Rev. B 2011, 83, 094531. [Google Scholar] [CrossRef]
- Villegas, J.E.; Gonzalez, E.M.; Montero, M.I.; Schuller, I.K.; Vicent, J.L. Directional vortex motion guided by artificially induced mesoscopic potentials. Phys. Rev. B 2003, 68, 224504. [Google Scholar] [CrossRef]
- Villegas, J.E.; Savel’Ev, S.; Nori, F.; Gonzalez, E.M.; Anguita, J.V.; García, R.; Vicent, J.L. A Superconducting Reversible Rectifier That Controls the Motion of Magnetic Flux Quanta. Science 2003, 302, 1188–1191. [Google Scholar] [CrossRef] [PubMed]
- Fukui, S.; Kato, M.; Togawa, Y. Effects of chiral helimagnets on vortex states in a superconductor. Supercond. Sci. Technol. 2016, 29, 125008. [Google Scholar] [CrossRef]
- Kim, S.K.; Myers, R.; Tserkovnyak, Y. Nonlocal Spin Transport Mediated by a Vortex Liquid in Superconductors. Phys. Rev. Lett. 2018, 121, 187203. [Google Scholar] [CrossRef]
- Linder, J.; Robinson, J.W.A. Superconducting spintronics. Nat. Phys. 2015, 11, 307–315. [Google Scholar] [CrossRef]
- Keizer, R.S.; Goennenwein, S.T.B.; Klapwijk, T.M.; Miao, G.; Xiao, G.; Gupta, A. A spin triplet supercurrent through the half-metallic ferromagnet CrO2. Nature 2006, 439, 825–827. [Google Scholar] [CrossRef]
- Banerjee, N.; Robinson, J.; Blamire, M. Reversible control of spin-polarized supercurrents in ferromagnetic Josephson junctions. Nat. Commun. 2014, 5, 4771. [Google Scholar] [CrossRef]
- Wang, X.; Di Bernardo, A.; Banerjee, N.; Wells, A.; Bergeret, F.S.; Blamire, M.; Robinson, J.W.A. Giant triplet proximity effect in superconducting pseudo spin valves with engineered anisotropy. Phys. Rev. B 2014, 89, 140508. [Google Scholar] [CrossRef]
- Braude, V.; Blanter, Y.M. Triplet Josephson Effect with Magnetic Feedback in a Superconductor-Ferromagnet Heterostructure. Phys. Rev. Lett. 2008, 100, 207001. [Google Scholar] [CrossRef]
- Robinson, J.W.A.; Witt, J.D.S.; Blamire, M.G. Controlled Injection of Spin-Triplet Supercurrents into a Strong Ferromagnet. Science 2010, 329, 59–61. [Google Scholar] [CrossRef]
- Yang, G.; Stano, P.; Klinovaja, J.; Loss, D. Majorana bound states in magnetic skyrmions. Phys. Rev. B 2016, 93, 224505. [Google Scholar] [CrossRef]
- Chen, W.; Schnyder, A.P. Majorana edge states in superconductor-noncollinear magnet interfaces. Phys. Rev. B 2015, 92, 214502. [Google Scholar] [CrossRef]
- Hals, K.M.D.; Schecter, M.; Rudner, M.S. Composite Topological Excitations in Ferromagnet-Superconductor Heterostructures. Phys. Rev. Lett. 2016, 117, 017001. [Google Scholar] [CrossRef]
- Petrović, A.P.; Raju, M.; Tee, X.Y.; Louat, A.; Maggio-Aprile, I.; Menezes, R.M.; Wyszyński, M.J.; Duong, N.K.; Reznikov, M.; Renner, C.; et al. Skyrmion-(Anti)Vortex Coupling in a Chiral Magnet-Superconductor Heterostructure. Phys. Rev. Lett. 2021, 126, 117205. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.Y.; Dong, J.; Xing, D.Y.; Wang, Z.D. Vortex dynamics in twinned superconductors. Phys. Rev. B 1998, 57, 5075–5078. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, D.; Zhao, Z.; Xu, Y.; Tong, S.; Lu, J.; Wei, D. Transverse Magnetoresistance Induced by the Nonuniformity of Superconductor. Nanomaterials 2022, 12, 1313. https://doi.org/10.3390/nano12081313
Zhao D, Zhao Z, Xu Y, Tong S, Lu J, Wei D. Transverse Magnetoresistance Induced by the Nonuniformity of Superconductor. Nanomaterials. 2022; 12(8):1313. https://doi.org/10.3390/nano12081313
Chicago/Turabian StyleZhao, Duo, Zhiyuan Zhao, Yaohan Xu, Shucheng Tong, Jun Lu, and Dahai Wei. 2022. "Transverse Magnetoresistance Induced by the Nonuniformity of Superconductor" Nanomaterials 12, no. 8: 1313. https://doi.org/10.3390/nano12081313
APA StyleZhao, D., Zhao, Z., Xu, Y., Tong, S., Lu, J., & Wei, D. (2022). Transverse Magnetoresistance Induced by the Nonuniformity of Superconductor. Nanomaterials, 12(8), 1313. https://doi.org/10.3390/nano12081313