Nanocrystalline Yb:YAG-Doped Silica Glass with Good Transmittance and Significant Spectral Performance Enhancements
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Homogeneity of Ion Doping
3.2. Microstructure Characterization
3.3. Spectral Characteristics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Laso Garcia, H.; Höppner, A.; Pelka, C.; Bähtz, E.; Brambrink, S.; Di Dio Cafiso, J.; Dreyer, S.; Göde, M.; Hassan, T.; Kluge, J.; et al. ReLaX: The Helmholtz International Beamline for Extreme Fields high-intensity short-pulse laser driver for relativistic laser–matter interaction and strong-field science using the high energy density instrument at the European X-ray free electron laser facility. High Power Laser Sci. Eng. 2021, 9, E59. [Google Scholar] [CrossRef]
- Roohforouz, A.; Eyni Chenar, R.; Rezaei-Nasirabad, R.; Azizi, S.; Hejaz, K.; Golshan, A.H.; Abedinajafi, A.; Vatani, V.; Nabavi, S.H. The effect of population inversion saturation on the transverse mode instability threshold in high power fiber laser oscillators. Sci. Rep. 2021, 11, 21116. [Google Scholar] [CrossRef]
- Wu, H.; Xu, J.; Huang, L.; Zeng, X.; Zhou, P. High-power fiber laser with real-time mode switchability. Chin. Opt. Lett. 2022, 20, 021402. [Google Scholar] [CrossRef]
- Atzeni, S.; Batani, D.; Danson, C.N.; Gizzi, L.A.; Perlado, M.; Tatarakis, M.; Tikhonchuk, V.; Volpe, L. An evaluation of sustainability and societal impact of high-power laser and fusion technologies: A case for a new European research infrastructure. High Power Laser Sci. Eng. 2021, 9, 04000e52. [Google Scholar] [CrossRef]
- Haan, S.W.; Lindl, J.D.; Callahan, D.A.; Clark, D.S.; Salmonson, J.D.; Hammel, B.A.; Atherton, L.J.; Cook, R.C.; Edwards, M.J.; Glenzer, S.; et al. Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility. Phys. Plasmas 2011, 18, 051001. [Google Scholar] [CrossRef]
- Li, W.; Gan, Z.; Yu, L.; Wang, C.; Liu, Y.; Guo, Z.; Xu, L.; Xu, M.; Hang, Y.; Xu, Y.; et al. 339 J high-energy Ti:sapphire chirped-pulse amplifier for 10 PW laser facility. Opt. Lett. 2018, 43, 5681–5684. [Google Scholar] [CrossRef]
- Cheng, H.; Wang, W.; Zhou, Y.; Qiao, T.; Lin, W.; Guo, Y.; Xu, S.; Yang, Z. High-repetition-rate ultrafast fiber lasers. Opt. Express 2018, 26, 16411–16421. [Google Scholar] [CrossRef]
- Danson, C.N.; Haefner, C.; Bromage, J.; Butcher, T.; Chanteloup, J.C.-F.; Chowdhury, E.A.; Galvanauskas, A.; Gizzi, L.A.; Hein, J.; Hillier, D.I.; et al. Petawatt and exawatt class lasers worldwide. High Power Laser Sci. Eng. 2019, 7, 03000e54. [Google Scholar] [CrossRef]
- Cook, J., II. Fusion Energy Generation in the Solid State by Nuclear Acoustic Resonance of Bloch Quasiparticle Deuterons. Infinite Energy 2009, 15, 4–5. [Google Scholar]
- Wang, W.; Wu, H.; Liu, C.; Sun, B.; Liang, H. Multigigawatt 50 fs Yb:CALGO regenerative amplifier system with 11 W average power and mid-infrared generation. Photon. Res. 2021, 9, 1439–1445. [Google Scholar] [CrossRef]
- Lü, R.; Teng, H.; Zhu, J.; Yu, Y.; Liu, W.; Chang, G.; Wei, Z. High power Yb-fiber laser amplifier based on nonlinear chirped-pulse amplification at a repetition rate of 1 MHz. Chin. Opt. Lett. 2021, 19, 091401. [Google Scholar] [CrossRef]
- Danson, C.; Hillier, D.; Hopps, N.; Neely, D. Petawatt class lasers worldwide. High Power Laser Sci. Eng. 2015, 3, 010000e3. [Google Scholar] [CrossRef]
- Overton, G. Laser Glass Materials: Glass advances usher in exawatt-class lasers. Laser Focus World Mag. Photonics Optoelectron. Ind. 2014, 50, 23–24. [Google Scholar]
- Fujimoto, Y.; Sato, T.; Okada, H.; Sumimura, K.; Yoshida, H.; Nakatsuka, M.; Ueda, T.; Fujinoki, A. Laser oscillation of Nd-doped silica glass with a high thermal shock parameter for high-average-power laser. In Proceedings of the CLEO/Europe, 2005 Conference on Lasers and Electro-Optics Europe, Munich, Germany, 12–17 June 2005. [Google Scholar] [CrossRef]
- Fujimoto, Y.; Sato, T.; Okada, H.; Sumimura, K.; Yoshida, H.; Nakatsuka, M.; Ueda, T.; Fujinoki, A. Development of Nd-doped optical gain material based on silica glass with a high thermal shock parameter for high-average-power laser. Conf. Lasers Electro-Opt. 2005, 2, 933–935. [Google Scholar] [CrossRef]
- Dong, H.; Wang, Z.; Shao, C.; Wang, S.; Lou, F.; Yu, C.; Chen, Y.; Hu, L. Effect of co-dopants on the spectral property of Yb3+ doped silica glasses at 1018 nm. Opt. Mater. 2021, 122, 111761. [Google Scholar] [CrossRef]
- Wang, S.; Lou, F.; Yu, C.; Zhou, Q.; Wang, M.; Feng, S.; Chen, D.; Hu, L.; Chen, W.; Guzik, M.; et al. Boulond. Influence of Al3+ and P5+ ion contents on the valence state of Yb3+ ions and the dispersion effect of Al3+ and P5+ ions on Yb3+ ions in silica glass. J. Mater. Chem. C 2014, 2, 4406–4414. [Google Scholar] [CrossRef]
- Qiu, H.; Yang, P.; Dong, J.; Deng, P.; Xu, J.; Chen, W. The influence of Yb concentration on laser crystal Yb:YAG. Mater. Lett. 2002, 55, 1–7. [Google Scholar] [CrossRef]
- Wang, G.; Xu, S.; Dai, S.; Yang, J.; Hu, L.; Jiang, Z. Thermal stability, spectra, and laser properties of Yb: Lead–zinc–telluride oxide glasses. J. Non-Cryst. Solids 2004, 336, 102–106. [Google Scholar] [CrossRef]
- Braglia, M.; Bruschi, C.; Dai, G.; Kraus, J.; Mosso, S.; Baricco, M.; Battezzati, L.; Rossi, F. Glass ceramics for optical amplifiers: Rheological, thermal, and optical properties. J. Non-Cryst. Solids 1999, 256–257, 170–175. [Google Scholar] [CrossRef]
- Tick, P.; Borrelli, N.; Reaney, I. The relationship between structure and transparency in glass-ceramic materials. Opt. Mater. 2000, 15, 81–91. [Google Scholar] [CrossRef]
- Dymshits, O.S.; Bukina, V.S.; Eremeev, K.N.; Alekseeva, I.P.; Tsenter, M.Y.; Khubetsov, A.A.; Basyrova, L.R.; Popkov, V.I.; Loiko, P.A.; Zhilin, A.A. Spectral properties and structure of transparent glass-ceramics based on Fe: MgAl2O4 and Fe: ZnAl2O4 crystals. J. Opt. Technol. c/C Opt. Zhurnal 2021, 88, 323–329. [Google Scholar] [CrossRef]
- Guo, M.; Wang, S.; Zhao, T.; Shao, C.; Feng, S.; Yu, C.; Ren, J.; Hu, L. Structural origin of thermally induced refractive index changes in Yb3+/Al3+/P5+/F−-co-doped silica glass. J. Am. Ceram. Soc. 2021, 104, 5016–5029. [Google Scholar] [CrossRef]
- Paul, M.; Bysakh, S.; Das, S.; Bhadra, S.; Pál, M.; Yoo, S.; Kalita, M.; Boyland, A.; Sahu, J. Yb2O3-doped YAG nano-crystallites in silica-based core glass matrix of optical fiber preform. Mater. Sci. Eng. 2010, 175, 108–119. [Google Scholar] [CrossRef]
- Xu, W.; Wang, M.; Zhang, L.; Shao, C.; Chen, D.; Wang, S.; Yu, C.; Hu, L. Effect of P5+/Al3+ molar ratio on structure and spectroscopic properties of Nd3+/Al3+/P5+ co-doped silica glass. J. Non-Cryst. Solids 2016, 432, 285–291. [Google Scholar] [CrossRef]
- Apte, P.; Burke, H.; Pickup, H. Synthesis of yttrium aluminum garnet by reverse strike precipitation. J. Mater. Res. 1992, 7, 706–711. [Google Scholar] [CrossRef]
- Ballato, J.; Dragic, P.D. Characterization of Raman gain spectra in Yb:YAG-derived optical fibers. Electron. Lett. 2013, 49, 895–896. [Google Scholar] [CrossRef]
- Nasikas, N.K.; Retsinas, A.; Papatheodorou, G.N. Y3Al5O12–SiO2 Glasses: Structure and Polyamorphism. J. Am. Ceram. Soc. 2014, 97, 2054–2060. [Google Scholar] [CrossRef]
- Wan, Z.; Feng, T.; Jiang, B.; Lu, H.; Zhang, L. Interface analysis and diffusion behavior of YAG/Nd: LuAG heterojunction structure. Ceram. Int. 2021, 47, 32053–32059. [Google Scholar] [CrossRef]
- Zhang, Y.; Qian, G.; Xiao, X.; Tian, X.; Ding, X.; Ma, Z.; Yang, L.; Guo, H.; Xu, S.; Yang, Z.; et al. The preparation of Yttrium Aluminosilicate (YAS) Glass Fiber with heavy doping of Tm3+ from Polycrystalline YAG ceramics. J. Am. Ceram. Soc. 2018, 101, 4627–4633. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Cao, J.; Wang, L.; Peng, X.; Zhong, J.; Yang, C.; Xu, S.; Yang, Z.; Peng, M. 915 nm all-fiber laser based on novel Nd-doped high alumina and yttria glass @ silica glass hybrid fiber for the pure blue fiber laser. Opt. Lett. 2019, 44, 2153–2156. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Liu, S.; Xu, W.; Li, X. Yb3+/Ln3+/Cr3+ (Ln = Er, Ho) doped transparent glass ceramics: Crystallization, Ln3+ sensitized Cr3+ up-conversion emission and multi-modal temperature sensing. J. Mater. Chem. C 2017, 5, 11769–11780. [Google Scholar] [CrossRef]
- Chen, L.; Yu, C.; Hu, L.; Chen, W. Preparation and spectroscopic properties of nanostructured glass-ceramics containing Yb3+, Er3+ ions and Co2+-doped spinel nanocrystals. Solid State Sci. 2012, 14, 287–290. [Google Scholar] [CrossRef]
- Lorenzi, R.; Paleari, A.; Sigaev, V.N.; Ignat’Eva, E.S.; Golubev, N.V. Augmented excitation cross section of gadolinium ions in nanostructured glasses. Opt. Lett. 2017, 42, 2419–2422. [Google Scholar] [CrossRef]
- Wu, B.; Zhou, S.; Ruan, J.; Qiao, Y.; Chen, D.; Zhu, C.; Qiu, J. Enhanced broadband near-infrared luminescence from transparent Yb3+/Ni2+ codoped silicate glass ceramics. Opt. Express 2008, 16, 1879–1884. [Google Scholar] [CrossRef]
- Wu, B.; Ruan, J.; Ren, J.; Chen, D.; Zhu, C.; Zhou, S.; Qiu, J. Enhanced broadband near-infrared luminescence in transparent silicate glass ceramics containing Yb3+ ions and Ni2+-doped LiGa5O8 nanocrystals. Appl. Phys. Lett. 2008, 92, 041110. [Google Scholar] [CrossRef]
- Rüter, D.; Bauhofer, W. Highly luminescent Eu3+ or Tb3+ doped and ZnO sensitized optical fibers drawn from silicon compatible sealing glasses. Appl. Phys. Lett. 1996, 69, 892–894. [Google Scholar] [CrossRef]
- Wang, R.; Yan, K.; Zhang, M.; Shen, X.; Dai, S.; Yang, X.; Yang, Z.; Yang, A.; Zhang, B.; Luther-Davies, B. Chemical environment of rare earth ions in Ge28.125 Ga6.25 S65.625 glass-ceramics doped with Dy3+. Appl. Phys. Lett. 2015, 107, 161901. [Google Scholar] [CrossRef] [Green Version]
- Brovelli, S.; Chiodini, A.; Lauria, A.; Meinardi, F.; Paleari, A. Energy transfer to erbium ions from wide-band-gap SnO2 nanocrystals in silica. Phys. Rev. B 2006, 73, 073406. [Google Scholar] [CrossRef]
- Boulon, G.; Alombert-Goget, G.; Guyot, Y.; Guzik, M.; Epicier, T.; Blanchard, N.P.; Chen, L.; Hu, L.; Chen, W. Conjugation of TEM-EDX and optical spectroscopy tools for the localization of Yb3+, Er3+ and Co2+ dopants in laser glass ceramics composed of MgAl2O4 spinel nanocrystals embedded in SiO2 glass. J. Mater. Chem. C 2014, 2, 9385–9397. [Google Scholar] [CrossRef] [Green Version]
- Lakshminarayana, G.; Wondraczek, L. Photoluminescence, and energy transfer in Tb3+/Mn2+ co-doped ZnAl2O4 glass ceramics. J. Solid-State Chem. 2011, 184, 1931–1938. [Google Scholar] [CrossRef]
- Luo, Q.; Qiao, X.; Fan, X.; Zhang, X. Near-infrared emission of Yb3+ through energy transfer from ZnO to Yb3+ in glass ceramic containing ZnO nanocrystals. Opt. Lett. 2011, 36, 2767–2769. [Google Scholar] [CrossRef]
- Gao, Z.; Lu, X.; Chu, Y.; Guo, S.; Liu, L.; Liu, Y.; Sun, S.; Ren, J.; Yang, J. The distribution of rare earth ions in a γ-Ga2O3 nanocrystal-silicate glass composite and its influence on the photoluminescence properties. J. Mater. Chem. C 2018, 6, 2944–2950. [Google Scholar] [CrossRef]
- Chai, G.; Dong, G.; Qiu, J.; Zhang, Q.; Yang, Z. 2.7 μm Emission from Transparent Er3+, Tm3+ Codoped Yttrium Aluminum Garnet (Y3Al5O12) Nanocrystals–Tellurate Glass Composites by Novel Comelting Technology. J. Phys. Chem. C 2012, 116, 19941–19950. [Google Scholar] [CrossRef]
- Veber, A.; Salminen, T.; Matthes, A.; Mueller, R.; Wondraczek, K.; Petit, L. Synthesis, Characterization, and Optical Properties of Ytterbium (III) Phosphates and Their Incorporation in Different Glass Matrices. J. Phys. Chem. C 2021, 125, 702–715. [Google Scholar] [CrossRef]
- Shao, C.; Ren, J.; Wang, F.; Ollier, N.; Xie, F.; Zhang, X.; Zhang, L.; Yu, C.; Hu, L. Origin of Radiation-Induced Darkening in Yb3+/Al3+/P5+-Doped Silica Glasses: Effect of the P/Al Ratio. J. Phys. Chem. B 2018, 122, 2809–2820. [Google Scholar] [CrossRef]
- McCumber, E.D. Theory of Phonon-Terminated Optical Masers. Phys. Rev. 1964, 134, A299–A306. [Google Scholar] [CrossRef]
- Zeng, X.; Zhao, G.; Xu, X.; Li, H.; Xu, J.; Zhao, Z.; He, X.; Pang, H.; Jie, M.; Yan, C. Comparison of spectroscopic parameters of 15at% Yb: YAlO3 and 15at% Yb: Y3Al5O12. J. Cryst. Growth 2005, 274, 106–112. [Google Scholar] [CrossRef]
- Kajan, J.; Volkov, M.; Damazyan, G.; Mukhin, I.; Gregor, T.; Palashov, O. Fabrication and Characterization of High-Dimension Single-Crystal Yb:YAG Ingots Grown by Horizontal Directed Crystallization Method. Cryst. Res. Technol. 2020, 55, 2000105. [Google Scholar] [CrossRef]
- Tang, F.; Huang, J.; Guo, W.; Wang, W.; Fei, B.; Cao, Y. Photoluminescence and laser behavior of Yb:YAG ceramic. Opt. Mater. 2012, 34, 757–760. [Google Scholar] [CrossRef]
- Ben-Xue, J.; Tong-De, H.; Yu-Song, W.; Wen-Bin, L.; Yu-Bai, P.; Tao, F.; Qiu-Hong, Y. Comparative spectroscopic investigation of Yb-doped YAG, YSAG and YLaO3 transparent ceramics. Chin. Phys. B 2008, 17, 3407. [Google Scholar] [CrossRef]
- Ferreira, J.; Santos, L.F.; Almeida, R.M. Sol–gel-derived Yb:YAG polycrystalline ceramics for laser applications. J. Sol.-Gel. Sci. Technol. 2017, 83, 436–446. [Google Scholar] [CrossRef]
- Han, S.; Yan, S.; Wang, Y.; Zou, Y.; Du, Y.; Li, Y.; Chen, D. High emission cross-section YVO4: Nd nanocrystalline glass prepared by high-silica porous glass. Mater. Lett. 2019, 253, 388–391. [Google Scholar] [CrossRef]
- Ramachari, D.; Moorthy, L.R.; Jayasankar, C. Optical absorption and emission properties of Nd3+-doped oxyfluorosilicate glasses for solid state lasers. Infrared Phys. Technol. 2014, 67, 555–559. [Google Scholar] [CrossRef]
- Hazarika, S.; Rai, S. Structural, optical, and non-linear investigation of Eu3+ ions in sol–gel silicate glass. Opt. Mater. 2004, 27, 173–179. [Google Scholar] [CrossRef]
YABS | YAS | |
---|---|---|
Tested value (mol%) | Yb2O3/0.14 | Yb2O3/0.15 |
Y2O3/0.45 | Y2O3/0.48 | |
Al2O3/0.88 | Al2O3/0.86 | |
BaO/0.06 | - | |
SiO2/98.47 | SiO2/98.51 | |
Density (g/cm3) | 2.2404 | 2.2238 |
Refractive index (n) | 1.4553 (1064 nm) | 1.4532 (1064 nm) |
Frequency (cm−1) | Matrix | Vibrations | Refs. |
---|---|---|---|
~217 | YAG | Y or Yb translatory | [30] |
Silica glass | - | -- | |
~393 | YAG | ν(AlO4) | [27,28,31] |
Silica glass | - | -- | |
~483 | YAG | - | -- |
Silica glass | Planar quaternary rings structural defect | [16,17] | |
~603 | YAG | δ(Al-O-Al) | [28] |
Silica glass | Planar ternary rings structural defect | [16,17] | |
~783~800 | YAG | ν(AlO4) + δ(Y-O) | [28,31] |
Silica glass | ν(Si-O-Si) | [16,17] |
YABS | YAS | |
---|---|---|
Absorption cross-section (pm2) | 2.47@975 nm | 1.93@975 nm |
Emission cross-section (pm2) | 1.44@1030 nm | 0.53@1030 nm |
Lifetimes (μs) | τ1 = 872 | τ = 900 |
τ2 = 30 |
Absorption Cross-Section | Emission Cross-Section | Refs. | |
---|---|---|---|
~975 nm (pm2) | ~1030 nm (pm2) | ||
Yb:YAG single crystal | ~0.45 | ~1.63 | [48,49] |
Yb:YAG transparent ceramic | ~0.78 | ~1.90 | [50,51] |
Yb doped silica glass | ~2.15 | ~0.62 | [17,46] |
Yb:YAG-doped silica glass (YABS) | ~2.47 | ~1.44 | In this work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, H.; Chen, Y.; Jiao, Y.; Zhou, Q.; Cheng, Y.; Zhang, H.; Lu, Y.; Wang, S.; Yu, C.; Hu, L. Nanocrystalline Yb:YAG-Doped Silica Glass with Good Transmittance and Significant Spectral Performance Enhancements. Nanomaterials 2022, 12, 1263. https://doi.org/10.3390/nano12081263
Dong H, Chen Y, Jiao Y, Zhou Q, Cheng Y, Zhang H, Lu Y, Wang S, Yu C, Hu L. Nanocrystalline Yb:YAG-Doped Silica Glass with Good Transmittance and Significant Spectral Performance Enhancements. Nanomaterials. 2022; 12(8):1263. https://doi.org/10.3390/nano12081263
Chicago/Turabian StyleDong, Hehe, Yinggang Chen, Yan Jiao, Qinling Zhou, Yue Cheng, Hui Zhang, Yujie Lu, Shikai Wang, Chunlei Yu, and Lili Hu. 2022. "Nanocrystalline Yb:YAG-Doped Silica Glass with Good Transmittance and Significant Spectral Performance Enhancements" Nanomaterials 12, no. 8: 1263. https://doi.org/10.3390/nano12081263
APA StyleDong, H., Chen, Y., Jiao, Y., Zhou, Q., Cheng, Y., Zhang, H., Lu, Y., Wang, S., Yu, C., & Hu, L. (2022). Nanocrystalline Yb:YAG-Doped Silica Glass with Good Transmittance and Significant Spectral Performance Enhancements. Nanomaterials, 12(8), 1263. https://doi.org/10.3390/nano12081263