Single-Walled Carbon Nanotube-Germanium Heterojunction for High-Performance Near-Infrared Photodetector
Abstract
:1. Introduction
2. Materials and Methods
2.1. SWCNT Films Synthesis and Treatment
2.2. Device Assembly
2.3. Characterization
3. Results
3.1. Characterization of the SWCNT-Ge Heterojunction Photodetectors
3.2. Performances of the As-Prepared SWCNT-Ge Heterojunction Photodetectors
3.3. Enhancing the Performances of the SWCNT-Ge Heterojunction Photodetectors by Ozone Treatment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Long, M.S.; Gao, A.Y.; Wang, P.; Xia, H.; Ott, C.; Pan, C.; Fu, Y.J.; Liu, E.F.; Chen, X.S.; Lu, W.; et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci. Adv. 2020, 3, e1700589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vines, P.; Kuzmenko, K.; Kirdoda, J.; Dumas, D.C.S.; Mirza, M.M.; Millar, R.W.; Paul, D.J.; Buller, G.S. High performance planar germanium-on-silicon single-photon avalanche diode detectors. Nat. Commun. 2019, 10, 1086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bullock, J.; Amani, M.; Cho, J.; Chen, Y.-Z.; Ahn, G.H.; Adinolfi, V.; Shrestha, V.R.; Gao, Y.; Crozier, K.B.; Chueh, Y.-L.; et al. Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature. Nat. Photonics 2018, 12, 601–607. [Google Scholar] [CrossRef]
- Wu, D.; Jia, C.; Shi, F.H.; Zeng, L.; Lin, P.; Dong, L.; Shi, Z.F.; Tian, Y.T.; Li, X.J.; Jie, J.S. Mixed-dimensional PdSe2/SiNWA heterostructure based photovoltaic detectors for self-driven, broadband photodetection, infrared imaging and humidity sensing. J. Mater. Chem. A 2020, 8, 3632–3642. [Google Scholar] [CrossRef]
- Goldflam, M.D.; Kadlec, E.A.; Olson, B.V.; Klem, J.F.; Hawkins, S.D.; Parameswaran, S.; Coon, W.T.; Keeler, G.A.; Fortune, T.R.; Tauke-Pedretti, A.; et al. Enhanced infrared detectors using resonant structures combined with thin type-II superlattice absorbers. Appl. Phys. Lett. 2016, 109, 251103. [Google Scholar] [CrossRef]
- Ariyawansa, G.; Reyner, C.J.; Steenbergen, E.H.; Duran, J.M.; Reding, J.D.; Scheihing, J.E.; Bourassa, H.R.; Liang, B.L.; Huffaker, D.L. InGaAs/InAsSb strained layer superlattices for mid-wave infrared detectors. Appl. Phys. Lett. 2016, 108, 022106. [Google Scholar] [CrossRef]
- Li, N.; Lan, Z.J.; Lau, Y.S.; Xie, J.J.; Zhao, D.H.; Zhu, F. SWIR photodetection and visualization realized by incorporating an organic SWIR sensitive bulk heterojunction. Adv. Sci. 2020, 7, 2000444. [Google Scholar] [CrossRef]
- Gu, P.; Wang, J.-P.; Muller-Buschbaum, P.; Qi, D.M.; Zhong, Q. Infrared thin film detectors based on thermoresponsive microgels with linear shrinkage behavior and gold nanorods. ACS Appl. Mater. Interfaces 2020, 12, 34180–34189. [Google Scholar] [CrossRef]
- Kopytko, M.; Jóźwikowski, K.; Martyniuk, P.; Rogalski, A. Photon recycling effect in small pixel p-i-n HgCdTe long wavelength infrared photodiodes. Infrared. Phys. Technol. 2019, 97, 38–42. [Google Scholar] [CrossRef]
- Jia, B.W.; Tan, K.H.; Loke, W.K.; Wicaksono, S.; Lee, K.H.; Yoon, S.F. Monolithic integration of insb photodetector on silicon for mid-infrared silicon photonics. ACS Photonics 2018, 5, 1512–1520. [Google Scholar] [CrossRef]
- Kim, J.; Ampadu, E.K.; Choi, W.J.; Oh, E. Photocurrent spectra from PbS photovoltaic infrared detectors using silver nanowires as plasmonic nano antenna electrodes. Nanotechnology 2019, 30, 075201. [Google Scholar] [CrossRef] [PubMed]
- Chusnutdinow, S.; Schreyeck, S.; Kret, S.; Kazakov, A.; Karczewski, G. Room temperature infrared detectors made of PbTe/CdTe multilayer composite. Appl. Phys. Lett. 2020, 117, 072102. [Google Scholar] [CrossRef]
- Yu, X.C.; Yu, P.; Wu, D.; Singh, B.; Zeng, Q.S.; Lin, H.; Zhou, W.; Lin, J.H.; Suenaga, K.; Liu, Z.J.; et al. Atomically thin noble metal dichalcogenide: A broadband mid-infrared semiconductor. Nat. Commun. 2018, 9, 1545. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, M.M.; Tang, X.; Guyot-Sionnest, P. Fast and sensitive colloidal quantum dot mid-wave infrared photodetectors. ACS Nano 2018, 12, 7264–7271. [Google Scholar] [CrossRef]
- Xu, W.Z.; Guo, Y.K.; Zhang, X.T.; Zheng, L.Y.; Zhu, T.; Zhao, D.H.; Hu, W.P.; Gong, X. Room-temperature-operated ultrasensitive broadband photodetectors by perovskite incorporated with conjugated polymer and single-wall carbon nanotubes. Adv. Funct. Mater. 2017, 28, 1705541. [Google Scholar] [CrossRef]
- Zhou, H.X.; Wang, J.; Ji, C.H.; Liu, X.C.; Han, J.Y.; Yang, M.; Gou, J.; Xu, J.; Jiang, Y.D. Polarimetric Vis-NIR photodetector based on self-aligned single-walled carbon nanotubes. Carbon 2019, 143, 844–850. [Google Scholar] [CrossRef]
- Zheng, Z.; Fang, H.H.; Liu, D.; Tan, Z.J.; Gao, X.; Hu, W.D.; Peng, H.L.; Tong, L.M.; Hu, W.P.; Zhang, J. Nonlocal response in infrared detector with semiconducting carbon nanotubes and graphdiyne. Adv. Sci. 2017, 4, 1700472. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.; Zou, Y.X.; Gong, X.; Gou, P.; Qian, J.; Qian, R.J.; An, Z.H. Double-layer heterostructure of graphene/carbon nanotube films for highly efficient broadband photodetector. Appl. Phys. Lett. 2018, 113, 061112. [Google Scholar] [CrossRef]
- Liang, S.; Ma, Z.; Wu, G.T.; Wei, N.; Huang, L.; Huang, H.X.; Liu, H.P.; Wang, S.; Peng, L.M. Microcavity-integrated carbon nanotube photodetectors. ACS Nano 2016, 10, 6963–6971. [Google Scholar] [CrossRef]
- Hu, X.-G.; Wei, Q.; Zhao, Y.-M.; Hou, P.-X.; Ren, W.; Liu, C.; Cheng, H.-M. FeCl3-functionalized graphene oxide/single-wall carbon nanotube/silicon heterojunction solar cells with an efficiency of 17.5%. J. Mater. Chem. A 2022, 10, 4644–4652. [Google Scholar] [CrossRef]
- Liu, Y.; Wei, N.; Zeng, Q.S.; Han, J.; Huang, H.X.; Zhong, D.L.; Wang, F.L.; Ding, L.; Xia, J.Y.; Xu, H.T.; et al. Room temperature broadband infrared carbon nanotube photodetector with high detectivity and stability. Adv. Opt. Mater. 2016, 4, 238–245. [Google Scholar] [CrossRef]
- Cai, B.F.; Su, Y.J.; Tao, Z.; Hu, J.H.; Zou, C.; Yang, Z.; Zhang, Y.F. Highly sensitive broadband single-walled carbon nanotube photodetectors enhanced by separated graphene nanosheets. Adv. Opt. Mater. 2018, 6, 1800791. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, Y.; Deng, L.; Zhou, Y.; Liu, C.H.; Fan, S.H. Photodetection and photoswitch based on polarized optical response of macroscopically aligned carbon nanotubes. Nano Lett. 2016, 16, 6378–6382. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Deng, T.; Li, S.S.; Sun, J.Y.; Yin, W.J.; Fang, Y.; Liu, Z.W. Highly sensitive ultraviolet photodetectors based on single wall carbon nanotube-graphene hybrid films. Appl. Surf. Sci. 2020, 512, 145651. [Google Scholar] [CrossRef]
- Kopylova, D.S.; Fedorov, F.S.; Alekseeva, A.A.; Gilshteyn, E.P.; Tsapenko, A.P.; Bubis, A.V.; Grebenko, A.K.; Popov, Z.I.; Sorokin, P.B.; Gladush, Y.G.; et al. Holey single-walled carbon nanotubes for ultra-fast broadband bolometers. Nanoscale 2018, 10, 18665–18671. [Google Scholar] [CrossRef]
- Nandi, S.; Misra, A. Spray coating of two-dimensional suspended film of vanadium oxide-coated carbon nanotubes for fabrication of a large volume infrared bolometer. ACS Appl. Mater. Interfaces 2020, 12, 1315–1321. [Google Scholar] [CrossRef]
- Landi, G.; Neitzert, H.-C. Application of a bio-nanocomposite tissue as an NIR optical receiver and a temperature sensor. ACS Appl. Electron. Mater. 2021, 3, 2790–2797. [Google Scholar] [CrossRef]
- Mahjouri-Samani, M.; Zhou, Y.S.; He, X.N.; Xiong, W.; Hilger, P.; Lu, Y.F. Plasmonic-enhanced carbon nanotube infrared bolometers. Nanotechnology 2013, 24, 035502. [Google Scholar] [CrossRef]
- Gong, Y.; Adhikari, P.; Liu, Q.; Wang, T.; Gong, M.; Chan, W.L.; Ching, W.Y.; Wu, J. Designing the interface of carbon nanotube/biomaterials for high-performance ultra-broadband photodetection. ACS Appl. Mater. Interfaces 2017, 9, 11016–11024. [Google Scholar] [CrossRef]
- McCulley, D.R.; Senger, M.J.; Bertoni, A.; Perebeinos, V.; Minot, E.D. Extremely efficient photocurrent generation in carbon nanotube photodiodes enabled by a strong axial electric field. Nano Lett. 2020, 20, 433–440. [Google Scholar] [CrossRef]
- Senger, M.J.; Kefayati, A.; Bertoni, A.; Perebeinos, V.; Minot, E.D. Dielectric engineering boosts the efficiency of carbon nanotube photodiodes. ACS Nano 2021, 15, 10472–10479. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Han, J.; Yao, S.; Wang, S.; Peng, L.M. Improving the performance and uniformity of carbon-nanotube-network-based photodiodes via yttrium oxide coating and decoating. ACS Appl. Mater. Interfaces 2019, 11, 11736–11742. [Google Scholar] [CrossRef] [PubMed]
- Ahnood, A.; Zhou, H.; Dai, Q.; Vygranenko, Y.; Suzuki, Y.; Esmaeili-Rad, M.; Amaratunga, G.; Nathan, A. Vertical CNT-Si photodiode array. Nano Lett. 2013, 13, 4131–4136. [Google Scholar] [CrossRef] [PubMed]
- Ong, P.-L.; Euler, W.B.; Levitsky, I.A. Carbon nanotube Si diode as a detector of mid-infrared illumination. Appl. Phys. Lett. 2010, 96, 033106. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.F.; Li, Z.P.; Wang, J.Z.; Kong, W.Y.; Wu, G.A.; Zheng, Y.Z.; Zhao, Y.W.; Yao, E.X.; Zhuang, N.X.; Luo, L.B. Broadband photodetector based on carbon nanotube thin film/single layer graphene Schottky junction. Sci. Rep. 2016, 6, 38569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.D.; Huang, W.; Lu, W.F.; Tang, R.F.; Li, C.; Lai, H.K.; Chen, S.Y.; Xue, C.L. Ohmic contact to n-type Ge with compositional Ti nitride. Appl. Surf. Sci. 2013, 284, 877–880. [Google Scholar] [CrossRef]
- Dimoulas, A.; Tsipas, P.; Sotiropoulos, A. Fermi-level pinning and charge neutrality level in germanium. Appl. Phys. Lett. 2006, 89, 252110. [Google Scholar] [CrossRef]
- Gong, X.; Tong, M.; Xia, Y.; Cai, W.; Moon, J.S.; Cao, Y.; Yu, G.; Shieh, C.-L.; Nilsson, B.; Heeger, A.J. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science 2009, 325, 1665. [Google Scholar] [CrossRef]
- Long, M.; Liu, E.; Wang, P.; Gao, A.; Xia, H.; Luo, W.; Wang, B.; Zeng, J.; Fu, Y.; Xu, K.; et al. Broadband photovoltaic detectors based on an atomically thin heterostructure. Nano Lett. 2016, 16, 2254–2259. [Google Scholar] [CrossRef]
- Wu, G.; Wang, X.; Chen, Y.; Wu, S.; Wu, B.; Jiang, Y.; Shen, H.; Lin, T.; Liu, Q.; Wang, X.; et al. MoTe2 p–n homojunctions defined by ferroelectric polarization. Adv. Mater. 2020, 32, 1907937. [Google Scholar] [CrossRef]
- Zeng, L.-H.; Wang, M.-Z.; Hu, H.; Nie, B.; Yu, Y.-Q.; Wu, C.-Y.; Wang, L.; Hu, J.-G.; Xie, C.; Liang, F.-X. Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector. ACS Appl. Mater. Interfaces 2013, 5, 9362–9366. [Google Scholar] [CrossRef] [PubMed]
- Huo, T.; Yin, H.; Zhou, D.; Sun, L.; Tian, T.; Wei, H.; Hu, N.; Yang, Z.; Zhang, Y.; Su, Y. Self-powered broadband photodetector based on single-walled carbon nanotube/GaAs heterojunctions. ACS Sustain. Chem. Eng. 2020, 8, 15532–15539. [Google Scholar] [CrossRef]
- Chen, W.; Liang, R.; Zhang, S.; Liu, Y.; Cheng, W.; Sun, C.; Xu, J. Ultrahigh sensitive near-infrared photodetectors based on MoTe2/germanium heterostructure. Nano Res. 2020, 13, 127–132. [Google Scholar] [CrossRef]
- Jia, Y.; Li, P.; Gui, X.; Wei, J.; Wang, K.; Zhu, H.; Wu, D.; Zhang, L.; Cao, A.; Xu, Y. Encapsulated carbon nanotube-oxide-silicon solar cells with stable 10% efficiency. Appl. Phys. Lett. 2011, 98, 133115. [Google Scholar] [CrossRef]
- Li, F.; Qiu, Z.; Liu, S.; Zhang, H. Carbon nanotube-perovskite composites for ultrasensitive broadband photodiodes. ACS Appl. Nano Mater. 2019, 2, 4974–4982. [Google Scholar] [CrossRef]
- Park, S.; Kim, S.J.; Nam, J.H.; Pitner, G.; Lee, T.H.; Ayzner, A.L.; Wang, H.; Fong, S.W.; Vosgueritchian, M.; Park, Y.J. Significant enhancement of infrared photodetector sensitivity using a semiconducting single-walled carbon nanotube/C60 phototransistor. Adv. Mater. 2015, 27, 759–765. [Google Scholar] [CrossRef]
- Kim, C.; Yoo, T.J.; Chang, K.E.; Kwon, M.G.; Hwang, H.J.; Lee, B.H. Highly responsive near-infrared photodetector with low dark current using graphene/germanium Schottky junction with Al2O3 interfacial layer. Nanophotonics 2021, 10, 1573–1579. [Google Scholar] [CrossRef]
Device Structure | Wavelength (nm) | Responsivity (mA W−1) | Rise Time (μs) | Fall Time (μs) | Detectivity (cm Hz1/2 W−1) | Ref. |
---|---|---|---|---|---|---|
CNT/Ge | 1310 | 362 | 9 | 11 | 7.22 × 1011 | this work |
Gr/Ge | 1550 | 51.8 | 23 | 108 | 1.38 × 1010 | [41] |
SWCNT/GaAs | 780 | 274 | 1410 | 270 | 7.6 × 1012 | [42] |
MoTe2/GeO2/Ge | 915 | 15.6 | 5000 | 5000 | 4.86 × 1011 | [43] |
Perovskite/SWCNT | 1080 | 27 | 7.24 | 14.47 | 1.2 × 1012 | [45] |
SWCNT/C60 | 1200 | 97,500 | 3500 | 3500 | 1.17 × 109 | [46] |
Gr/Al2O3/Ge | 1550 | 1200 | 1.8 × 1010 | [47] | ||
Commercial Ge photodetector | 1550 | ~2 × 1011 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, T.; Yu, Y.; Hu, Y.; Li, K.; Guo, N.; Jia, Y. Single-Walled Carbon Nanotube-Germanium Heterojunction for High-Performance Near-Infrared Photodetector. Nanomaterials 2022, 12, 1258. https://doi.org/10.3390/nano12081258
Qi T, Yu Y, Hu Y, Li K, Guo N, Jia Y. Single-Walled Carbon Nanotube-Germanium Heterojunction for High-Performance Near-Infrared Photodetector. Nanomaterials. 2022; 12(8):1258. https://doi.org/10.3390/nano12081258
Chicago/Turabian StyleQi, Tao, Yaolun Yu, Yanyan Hu, Kangjie Li, Nan Guo, and Yi Jia. 2022. "Single-Walled Carbon Nanotube-Germanium Heterojunction for High-Performance Near-Infrared Photodetector" Nanomaterials 12, no. 8: 1258. https://doi.org/10.3390/nano12081258
APA StyleQi, T., Yu, Y., Hu, Y., Li, K., Guo, N., & Jia, Y. (2022). Single-Walled Carbon Nanotube-Germanium Heterojunction for High-Performance Near-Infrared Photodetector. Nanomaterials, 12(8), 1258. https://doi.org/10.3390/nano12081258