Principle and Applications of Multimode Strong Coupling Based on Surface Plasmons
Abstract
:1. Introduction
2. Basic Principle of Multimode Strong Coupling
2.1. Vacuum Rabi Splitting
2.2. Multiple Harmonic Oscillators
2.3. Scattering Spectra
3. Recent Progress in Multimode Strong Coupling
3.1. Multimode Coupling Related to Microcavity Nanostructure
3.1.1. Coupling Related to TMDs Microcavity Nanostructure
3.1.2. Coupling Related to Single-Dye Microcavity Nanostructure
3.1.3. Coupling Related to Two-Dye Microcavity Nanostructure
3.2. Multimode Coupling Related to Periodic Noble Metallic NPs- J-Aggregates Nanostructure
3.3. Multimode Coupling Related to Core–Shell Multicomponent Systems
4. Conclusions and Development Trends
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yesudasu, V.; Pradhan, H.S.; Pandya, R.J. Recent progress in surface plasmon resonance based sensors: A comprehensive review. Heliyon 2021, 7, e06321. [Google Scholar] [CrossRef] [PubMed]
- Dejpasand, M.T.; Saievar-Iranizad, E.; Bayat, A. Photoluminescence enhancement of single-layer graphene quantum dots by the surface plasmon resonance of Au nanocubes. J. Lumin. 2021, 236, 118070. [Google Scholar] [CrossRef]
- Ukhtary, M.S.; Saito, R. Surface plasmons in graphene and carbon nanotubes. Carbon 2020, 167, 455–474. [Google Scholar] [CrossRef]
- Odom, T.W.; Schatz, G.C. Introduction to Plasmonics. Chem. Rev. 2011, 111, 3667–3668. [Google Scholar] [CrossRef]
- Ferreira, A.L.; de Lima, L.F.; Moraes, A.S.; Rubira, R.J.; Constantino, C.J.; Leite, F.L.; Delgado-Silva, A.O.; Ferreira, M. Development of a novel biosensor for Creatine Kinase (CK-MB) using Surface Plasmon Resonance (SPR). Appl. Surf. Sci. 2021, 554, 149565. [Google Scholar] [CrossRef]
- Hu, L.; Hu, M.; Liu, S. Improved Smith–Purcell radiation owing to field localization and reflection of surface plasmon polaritons in grating substrate. Opt. Commun. 2021, 491, 126948. [Google Scholar] [CrossRef]
- Park, J.-W. Natural circular dichroism in the surface plasmon resonance and interband transition of noble metal nanocrystals induced by surface magnetism. Appl. Surf. Sci. 2020, 541, 148370. [Google Scholar] [CrossRef]
- Liu, Y.; Li, F.; Xu, C.; He, Z.; Gao, J.; Zhou, Y.; Xu, L. The Design and Research of a New Hybrid Surface Plasmonic Waveguide Nanolaser. Materials 2021, 14, 2230. [Google Scholar] [CrossRef]
- Liu, Y.; Li, F.; Yao, F.; He, Z.; Liu, S.; Xu, L.; Han, X.; Wang, K. Synthesis, Structure and Photoluminescence Properties of 2D Organic–Inorganic Hybrid Perovskites. Appl. Sci. 2019, 9, 5211. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Zhou, W.-J.; Deng, Y.-H.; Zheng, Y.-Q.; Shi, Z.-H.; Ang, L.K.; Zhou, Z.-K.; Wu, L. Plexcitonic strong coupling: Unique features, applications, and challenges. J. Phys. D Appl. Phys. 2022, 55, 203002. [Google Scholar] [CrossRef]
- Tan, W.J.; Thomas, P.A.; Luxmoore, I.J.; Barnes, W.L. Single vs. double anti-crossing in the strong coupling between surface plasmons and molecular excitons. J. Chem. Phys. 2021, 154, 024704. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wang, Y.-D.; Yin, L.-Z.; Han, F.-Y.; Huang, T.-J.; Liu, P.-K. Bifunctional Luneburg–fish-eye lens based on the manipulation of spoof surface plasmons. Opt. Lett. 2021, 46, 1389–1392. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Zhao, T.; Chen, L.; Wang, C.; Zhou, Z.; Ren, X.-F. The influence of single layer MoS2 flake on the propagated surface plasmons of silver nanowire. Nanotechnology 2022, 33, 155401. [Google Scholar] [CrossRef] [PubMed]
- Davis, T.; Hendry, E. Superchiral electromagnetic fields created by surface plasmons in nonchiral metallic nanostructures. Phys. Rev. B 2013, 87, 085405. [Google Scholar] [CrossRef]
- Genzel, L.; Martin, T. Infrared absorption by surface phonons and surface plasmons in small crystals. Surf. Sci. 1973, 34, 33–49. [Google Scholar] [CrossRef]
- He, Z.; Li, F.; Liu, Y.; Yao, F.; Xu, L.; Han, X.; Wang, K. Principle and Applications of the Coupling of Surface Plasmons and Excitons. Appl. Sci. 2020, 10, 1774. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Qu, Y.; Yuan, J.; Qiu, S.; Zhou, X.; Yan, B.; Wu, Q.; Liu, B.; Wang, K.; Sang, X.; et al. Ultra-short polarization beam splitter based on dual-core photonic crystal fiber with surface plasmon resonance effect. Opt. Eng. 2021, 60, 076104. [Google Scholar] [CrossRef]
- Cuartero-González, A.; Fernandez-Dominguez, A.I. Light-Forbidden Transitions in Plasmon-Emitter Interactions beyond the Weak Coupling Regime. ACS Photonics 2018, 5, 3415–3420. [Google Scholar] [CrossRef]
- Cuenin, J.-C.; Merz, K. Weak coupling limit for Schrödinger-type operators with degenerate kinetic energy for a large class of potentials. Lett. Math. Phys. 2021, 111, 46. [Google Scholar] [CrossRef]
- Spiechowicz, J.; Łuczka, J. Energy of a free Brownian particle coupled to thermal vacuum. Sci. Rep. 2021, 11, 4088. [Google Scholar] [CrossRef]
- Takemori, N.; Arita, R.; Sakai, S. Physical properties of weak-coupling quasiperiodic superconductors. Phys. Rev. B 2020, 102, 115108. [Google Scholar] [CrossRef]
- Lidzey, D.; Bradley, D.; Skolnick, M.; Virgili, T.; Walker, S.; Whittaker, D.M. Strong exciton–photon coupling in an organic semiconductor microcavity. Nature 1998, 395, 53–55. [Google Scholar] [CrossRef]
- Chantharasupawong, P.; Tetard, L.; Thomas, J. Coupling Enhancement and Giant Rabi-Splitting in Large Arrays of Tunable Plexcitonic Substrates. J. Phys. Chem. C 2014, 118, 23954–23962. [Google Scholar] [CrossRef]
- Takele, W.M.; Piatkowski, L.; Wackenhut, F.; Gawinkowski, S.; Meixner, A.J.; Waluk, J. Scouting for strong light–matter coupling signatures in Raman spectra. Phys. Chem. Chem. Phys. 2021, 23, 16837–16846. [Google Scholar] [CrossRef]
- Brawley, Z.T.; Storm, S.D.; Mora, D.A.C.; Pelton, M.; Sheldon, M. Angle-independent plasmonic substrates for multi-mode vibrational strong coupling with molecular thin films. J. Chem. Phys. 2021, 154, 104305. [Google Scholar] [CrossRef]
- Liu, R.; Zha, Z.; Li, C.; Shafi, M.; Peng, Q.; Liu, M.; Zhang, C.; Du, X.; Jiang, S. Coupling of multiple plasma polarization modes in particles–multilayer film system for surface-enhanced Raman scattering. APL Photon. 2021, 6, 036104. [Google Scholar] [CrossRef]
- Burgin, J.; Langot, P.; Arbouet, A.; Margueritat, J.; Gonzalo, J.; Afonso, C.N.; Vallée, F.; Mlayah, A.; Rossell, M.D.; Van Tendeloo, G. Acoustic Vibration Modes and Electron–Lattice Coupling in Self-Assembled Silver Nanocolumns. Nano Lett. 2008, 8, 1296–1302. [Google Scholar] [CrossRef] [Green Version]
- Abid, I.; Chen, W.; Yuan, J.; Najmaei, S.; Peñafiel, E.C.; Péchou, R.; Large, N.; Lou, J.; Mlayah, A. Surface enhanced resonant Raman scattering in hybrid MoSe2@Au nanostructures. Opt. Express 2018, 26, 29411–29423. [Google Scholar] [CrossRef] [Green Version]
- Teo, S.L.; Lin, V.K.; Marty, R.; Large, N.; Llado, E.A.; Arbouet, A.; Girard, C.; Aizpurua, J.; Tripathy, S.; Mlayah, A. Gold nanoring trimers: A versatile structure for infrared sensing. Opt. Express 2010, 18, 22271–22282. [Google Scholar] [CrossRef] [Green Version]
- Scarangella, A.; Soumbo, M.; Mlayah, A.; Bonafos, C.; Monje, M.-C.; Roques, C.; Marcelot, C.; Large, N.; Dammak, T.; Makasheva, K. Detection of the conformational changes of Discosoma red fluorescent proteins adhered on silver nanoparticles-based nanocomposites via surface-enhanced Raman scattering. Nanotechnology 2019, 30, 165101. [Google Scholar] [CrossRef] [Green Version]
- Ahmadivand, A. Tunneling Plasmonics: Vacuum Rabi Oscillations in Carbon Nanotube Mediated Electromigrated Nanojunctions. J. Phys. Chem. C 2020, 125, 782–791. [Google Scholar] [CrossRef]
- Bitton, O.; Gupta, S.N.; Houben, L.; Kvapil, M.; Křápek, V.; Šikola, T.; Haran, G. Vacuum Rabi splitting of a dark plasmonic cavity mode revealed by fast electrons. Nat. Commun. 2020, 11, 487. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Chen, H. Vacuum Rabi Splitting of a Single Nitrogen-Vacancy Center Coupled to a Photonic Crystal Nanocavity. Int. J. Theor. Phys. 2021, 60, 3188–3196. [Google Scholar] [CrossRef]
- Wiegand, E.; Rousseaux, B.; Johansson, G. Transmon in a semi-infinite high-impedance transmission line: Appearance of cavity modes and Rabi oscillations. Phys. Rev. Res. 2021, 3, 023003. [Google Scholar] [CrossRef]
- Vasista, A.B.; Barnes, W.L. Molecular Monolayer Strong Coupling in Dielectric Soft Microcavities. Nano Lett. 2020, 20, 1766–1773. [Google Scholar] [CrossRef]
- Katzen, J.M.; Tserkezis, C.; Cai, Q.; Li, L.H.; Kim, J.M.; Lee, G.; Yi, G.-R.; Hendren, W.R.; Santos, E.J.G.; Bowman, R.M.; et al. Strong Coupling of Carbon Quantum Dots in Plasmonic Nanocavities. ACS Appl. Mater. Interfaces 2020, 12, 19866–19873. [Google Scholar] [CrossRef]
- Al-Ani, I.A.M.; As’Ham, K.; Huang, L.; Miroshnichenko, A.E.; Lei, W.; Hattori, H.T. Strong Coupling of Exciton and High-Q Mode in All-Perovskite Metasurfaces. Adv. Opt. Mater. 2022, 10, 2101120. [Google Scholar] [CrossRef]
- Petković, A.; Ristivojevic, Z. Mediated interaction between polarons in a one-dimensional Bose gas. Phys. Rev. A 2022, 105, L021303. [Google Scholar] [CrossRef]
- Vu, C.; Laverdant, J. Plasmonic Purcell Effect in Single Confined Metallic Layer. Sens. Transducers 2022, 255, 44–52. [Google Scholar]
- Yuen-Zhou, J.; Xiong, W.; Shegai, T. Polariton chemistry: Molecules in cavities and plasmonic media. J. Chem. Phys. 2022, 156, 030401. [Google Scholar] [CrossRef]
- Saudan, Q.; Bekele, D.A.; Dong, G.; Yu, Y.; Yvind, K.; Mørk, J.; Galili, M. Crosstalk-free all-optical switching enabled by Fano resonance in a multi-mode photonic crystal nanocavity. Opt. Express 2022, 30, 7457. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Liu, H.; Xu, X.; Zhang, R.; Xia, H. Dynamic Fano resonance and enhanced harmful gas measurement sensitivity in a universal multimode waveguide-microcavity model. Opt. Eng. 2022, 61, 061403. [Google Scholar] [CrossRef]
- Damien Eschimèse, F.V.; Ha, C.; Arscott, S.; Mélin, T.; Lévêque, G. Strong and weak polarization-dependent interactions in connected and disconnected plasmonic nanostructures. Nanoscale Adv. 2022, 4, 1173–1181. [Google Scholar] [CrossRef]
- Devi, A.; Gunapala, S.D.; Premaratne, M. Coherent and incoherent laser pump on a five-level atom in a strongly coupled cavity-QED system. Phys. Rev. A 2022, 105, 013701. [Google Scholar] [CrossRef]
- Varguet, H.; Díaz-Valles, A.A.; Guérin, S.; Jauslin, H.R.; Francs, G.C.D. Collective strong coupling in a plasmonic nanocavity. J. Chem. Phys. 2021, 154, 084303. [Google Scholar] [CrossRef]
- Yang, P.Y.; Cao, J. Quantum Effects in Chemical Reactions under Polaritonic Vibrational Strong Coupling. J. Phys. Chem. Lett. 2021, 12, 9531–9538. [Google Scholar] [CrossRef]
- Chiang, K.-T.; Zhang, W.-M. Non-Markovian decoherence dynamics of strong-coupling hybrid quantum systems: A master equation approach. Phys. Rev. A 2021, 103, 013714. [Google Scholar] [CrossRef]
- Xu, L.; Li, F.; Liu, Y.; Yao, F.; Liu, S. Surface Plasmon Nanolaser: Principle, Structure, Characteristics and Applications. Appl. Sci. 2019, 9, 861. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Li, F.; Wei, L.; Zhou, J.; Liu, S. Design of Surface Plasmon Nanolaser Based on MoS2. Appl. Sci. 2018, 8, 2110. [Google Scholar] [CrossRef] [Green Version]
- D’Orlando, A.; Bayle, M.; Louarn, G.; Humbert, B. AFM-Nano Manipulation of Plasmonic Molecules Used as “Nano-Lens” to Enhance Raman of Individual Nano-Objects. Materials 2019, 12, 1372. [Google Scholar] [CrossRef] [Green Version]
- D’Orlando, A.; Mevellec, J.-Y.; Louarn, G.; Humbert, B. Atomic Force Microscopy Nanomanipulation by Confocal Raman Multiwavelength Spectroscopy: Application at the Monitoring of Resonance Profile Excitation Changes of Manipulated Carbon Nanotube. J. Phys. Chem. C 2020, 124, 2705–2711. [Google Scholar] [CrossRef]
- Song, H.; Ahn, H.; Kim, T.; Choi, J.-R.; Kim, K. Localized Surface Plasmon Fields Manipulation on Nanostructures Using Wavelength Shifting. Appl. Sci. 2021, 11, 9133. [Google Scholar] [CrossRef]
- Dicke, R.H. Coherence in Spontaneous Radiation Processes. Phys. Rev. 1954, 93, 99–110. [Google Scholar] [CrossRef] [Green Version]
- Roses, M.M.; Dalla Torre, E.G. Dicke model. J. PLoS ONE 2020, 15, e0235197. [Google Scholar] [CrossRef]
- Langford, N.K.; Sagastizabal, R.; Kounalakis, M.; Dickel, C.; Bruno, A.; Luthi, F.; Thoen, D.J.; Endo, A.; Dicarlo, L. Experimentally simulating the dynamics of quantum light and matter at deep-strong coupling. Nat. Commun. 2017, 8, 1715. [Google Scholar] [CrossRef]
- Garziano, L.; Settineri, A.; Di Stefano, O.; Savasta, S.; Nori, F. Gauge invariance of the Dicke and Hopfield models. Phys. Rev. A 2020, 102, 023718. [Google Scholar] [CrossRef]
- Castaños, O.; Nahmad-Achar, E.; López-Peña, R.; Hirsch, J.G. No singularities in observables at the phase transition in the Dicke model. Phys. Rev. A 2011, 83, 051601. [Google Scholar] [CrossRef]
- Mila, F. Ladders in a magnetic field: A strong coupling approach. Eur. Phys. J. B—Condens. Matter Complex Syst. 1998, 6, 201–205. [Google Scholar] [CrossRef] [Green Version]
- Strasberg, P.; Schaller, G.; Schmidt, T.L.; Esposito, M. Fermionic reaction coordinates and their application to an autonomous Maxwell demon in the strong-coupling regime. Phys. Rev. B 2018, 97, 205405. [Google Scholar] [CrossRef] [Green Version]
- Saller, M.A.C.; Kelly, A.; Geva, E. Benchmarking Quasiclassical Mapping Hamiltonian Methods for Simulating Cavity-Modified Molecular Dynamics. J. Phys. Chem. Lett. 2021, 12, 3163–3170. [Google Scholar] [CrossRef]
- Seiringer, R. The polaron at strong coupling. Rev. Math. Phys. 2021, 33, 2060012. [Google Scholar] [CrossRef]
- Karg, T.M.; Gouraud, B.; Ngai, C.T.; Schmid, G.-L.; Hammerer, K.; Treutlein, P. Light-mediated strong coupling between a mechanical oscillator and atomic spins 1 m apart. Science 2020, 369, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Skrypnyk, T. Integrability and superintegrability of the generalized n-level many-mode Jaynes–Cummings and Dicke models. J. Math. Phys. 2009, 50, 103523. [Google Scholar] [CrossRef]
- Shore, B.W.; Knight, P.L. The Jaynes-Cummings Model. J. Mod. Opt. 1993, 40, 1195–1238. [Google Scholar] [CrossRef]
- Smirne, A.; Breuer, H.-P.; Piilo, J.; Vacchini, B. Initial correlations in open-systems dynamics: The Jaynes-Cummings model. Phys. Rev. A 2010, 82, 062114. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Wang, K.; Xing, X.; Wang, M.; Lu, P. Rabi Splitting in a Plasmonic Nanocavity Coupled to a WS2 Monolayer at Room Temperature. ACS Photonics 2018, 5, 3970–3976. [Google Scholar] [CrossRef]
- Lu, G.; Gubbin, C.R.; Nolen, J.R.; Folland, T.; Tadjer, M.J.; De Liberato, S.; Caldwell, J.D. Engineering the Spectral and Spatial Dispersion of Thermal Emission via Polariton–Phonon Strong Coupling. Nano Lett. 2021, 21, 1831–1838. [Google Scholar] [CrossRef]
- Hulkko, E.; Pikker, S.; Tiainen, V.; Tichauer, R.H.; Groenhof, G.; Toppari, J.J. Effect of molecular Stokes shift on polariton dynamics. J. Chem. Phys. 2021, 154, 154303. [Google Scholar] [CrossRef]
- Pscherer, A.; Meierhofer, M.; Wang, D.; Kelkar, H.; Martín-Cano, D.; Utikal, T.; Götzinger, S.; Sandoghdar, V. Single-Molecule Vacuum Rabi Splitting: Four-Wave Mixing and Optical Switching at the Single-Photon Level. Phys. Rev. Lett. 2021, 127, 133603. [Google Scholar] [CrossRef]
- As’ham, K.; Al-Ani, I.; Huang, L.; Miroshnichenko, A.E.; Hattori, H.T. Boosting Strong Coupling in a Hybrid WSe2 Monolayer–Anapole–Plasmon System. ACS Photonics 2021, 8, 489–496. [Google Scholar] [CrossRef]
- Qiu, L.; Mandal, A.; Morshed, O.; Meidenbauer, M.T.; Girten, W.; Huo, P.; Vamivakas, A.N.; Krauss, T.D. Molecular Polaritons Generated from Strong Coupling between CdSe Nanoplatelets and a Dielectric Optical Cavity. J. Phys. Chem. Lett. 2021, 12, 5030–5038. [Google Scholar] [CrossRef] [PubMed]
- Roothaan, C.C.J. New Developments in Molecular Orbital Theory. Rev. Mod. Phys. 1951, 23, 69–89. [Google Scholar] [CrossRef]
- Hehre, W.J.; Ditchfield, R.; Radom, L.; Pople, J.A. Molecular orbital theory of the electronic structure of organic compounds. V. Molecular theory of bond separation. J. Am. Chem. Soc. 1970, 92, 4796–4801. [Google Scholar] [CrossRef]
- Novotny, L. Strong coupling, energy splitting, and level crossings: A classical perspective. Am. J. Phys. 2010, 78, 1199–1202. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Hou, S.; Sharma, M.; Tobing, L.Y.; Song, Z.; Delikanli, S.; Hettiarachchi, C.; Zhang, D.; Fan, W.; Birowosuto, M.D.; et al. Strong Plasmon-Wannier Mott Exciton Interaction with High Aspect Ratio Colloidal Quantum Wells. Matter 2020, 2, 1550–1563. [Google Scholar] [CrossRef]
- Wang, B.; Zeng, X.-Z.; Li, Z.-Y. Quantum versus optical interaction contribution to giant spectral splitting in a strongly coupled plasmon–molecules system. Photon-Res. 2020, 8, 343. [Google Scholar] [CrossRef]
- Shahbazyan, T.V. Exciton–Plasmon Energy Exchange Drives the Transition to a Strong Coupling Regime. Nano Lett. 2019, 19, 3273–3279. [Google Scholar] [CrossRef] [Green Version]
- Pelton, M.; Storm, S.D.; Leng, H. Strong coupling of emitters to single plasmonic nanoparticles: Exciton-induced transparency and Rabi splitting. Nanoscale 2019, 11, 14540–14552. [Google Scholar] [CrossRef]
- Jurga, R.; D’Agostino, S.; Della Sala, F.; Ciracì, C. Plasmonic Nonlocal Response Effects on Dipole Decay Dynamics in the Weak- and Strong-Coupling Regimes. J. Phys. Chem. C 2017, 121, 22361–22368. [Google Scholar] [CrossRef]
- Waks, E.; Sridharan, D. Cavity QED treatment of interactions between a metal nanoparticle and a dipole emitter. Phys. Rev. A 2010, 82, 043845. [Google Scholar] [CrossRef] [Green Version]
- Qiang, J.; Furman, M.A.; Ryne, R.D. Strong-strong beam-beam simulation using a Green function approach. Phys. Rev. Spéc. Top.—Accel. Beams 2002, 5, 104402. [Google Scholar] [CrossRef] [Green Version]
- Horenko, I.; Salzmann, C.; Schmidt, B.; Schütte, C. Quantum-classical Liouville approach to molecular dynamics: Surface hopping Gaussian phase-space packets. J. Chem. Phys. 2002, 117, 11075–11088. [Google Scholar] [CrossRef] [Green Version]
- Trügler, A.; Hohenester, U. Strong coupling between a metallic nanoparticle and a single molecule. Phys. Rev. B 2008, 77, 115403. [Google Scholar] [CrossRef] [Green Version]
- Ridolfo, A.; di Stefano, O.; Fina, N.; Saija, R.; Savasta, S. Quantum Plasmonics with Quantum Dot-Metal Nanoparticle Molecules: Influence of the Fano Effect on Photon Statistics. Phys. Rev. Lett. 2010, 105, 263601. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.-T.; Liu, S.-D.; Zhou, H.-J.; Hao, Z.-H.; Wang, Q.-Q. Coherent exciton-plasmon interaction in the hybrid semiconductor quantum dot and metal nanoparticle complex. Opt. Lett. 2007, 32, 2125–2127. [Google Scholar] [CrossRef] [PubMed]
- Artuso, R.D.; Bryant, G.W. Optical Response of Strongly Coupled Quantum Dot−Metal Nanoparticle Systems: Double Peaked Fano Structure and Bistability. Nano Lett. 2008, 8, 2106–2111. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.-W.; Sandoghdar, V.; Agio, M. Coherent Interaction of Light with a Metallic Structure Coupled to a Single Quantum Emitter: From Superabsorption to Cloaking. Phys. Rev. Lett. 2013, 110, 153605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziolkowski, R.; Arnold, J.M.; Gogny, D.M. Ultrafast pulse interactions with two-level atoms. Phys. Rev. A 1995, 52, 3082–3094. [Google Scholar] [CrossRef]
- Stete, F.; Koopman, W.; Bargheer, M. Signatures of Strong Coupling on Nanoparticles: Revealing Absorption Anticrossing by Tuning the Dielectric Environment. ACS Photonics 2017, 4, 1669–1676. [Google Scholar] [CrossRef] [Green Version]
- Khitrova, G.; Gibbs, H.M.; Kira, M.; Koch, S.W.; Scherer, A. Vacuum Rabi splitting in semiconductors. Nat. Phys. 2006, 2, 81–90. [Google Scholar] [CrossRef]
- Barnes, P.T.W. Strong coupling between surface plasmon polaritons and emitters. Rep. Prog. Phys. 2015, 78, 1–64. [Google Scholar]
- Melnikau, D.; Govyadinov, A.; Sánchez-Iglesias, A.; Grzelczak, M.; Nabiev, I.R.; Liz-Marzán, L.M.; Rakovich, Y.P. Double Rabi Splitting in a Strongly Coupled System of Core–Shell Au@Ag Nanorods and J-Aggregates of Multiple Fluorophores. J. Phys. Chem. Lett. 2019, 10, 6137–6143. [Google Scholar] [CrossRef] [PubMed]
- Mueller, N.S.; Pfitzner, E.; Okamura, Y.; Gordeev, G.; Kusch, P.; Lange, H.; Heberle, J.; Schulz, F.; Reich, S. Surface-Enhanced Raman Scattering and Surface-Enhanced Infrared Absorption by Plasmon Polaritons in Three-Dimensional Nanoparticle Supercrystals. ACS Nano 2021, 15, 5523–5533. [Google Scholar] [CrossRef] [PubMed]
- Georgiou, K.; Jayaprakash, R.; Othonos, A.; Lidzey, D.G. Ultralong-Range Polariton-Assisted Energy Transfer in Organic Microcavities. Angew. Chem. Int. Ed. 2021, 60, 16661–16667. [Google Scholar] [CrossRef]
- Wu, X.; Gray, S.K.; Pelton, M. Quantum-dot-induced transparency in a nanoscale plasmonic resonator. Opt. Express 2010, 18, 23633–23645. [Google Scholar] [CrossRef]
- Waks, E.; Vuckovic, J. Dipole Induced Transparency in Drop-Filter Cavity-Waveguide Systems. Phys. Rev. Lett. 2006, 96, 153601. [Google Scholar] [CrossRef] [Green Version]
- Bohren, C.F.; Huffman, D.R.J.O.; Technology, L. Absorption and Scattering of Light by Small Particles; Wiley Science Paperback Series; John Wiley & Sons: Hoboken, NJ, USA, 1998; Volume 31, p. 328. [Google Scholar]
- Balci, S.; Kocabas, C. Ultra hybrid plasmonics: Strong coupling of plexcitons with plasmon polaritons. Opt. Lett. 2015, 40, 3424–3427. [Google Scholar] [CrossRef]
- Kockum, A.F.; Miranowicz, A.; De Liberato, S.; Savasta, S.; Nori, F. Ultrastrong coupling between light and matter. Nat. Rev. Phys. 2019, 1, 19–40. [Google Scholar] [CrossRef] [Green Version]
- Armitage, A.; Skolnick, M.S.; Kavokin, A.V.; Whittaker, D.M.; Astratov, V.N.; Gehring, G.A.; Roberts, J.S. Polariton-induced optical asymmetry in semiconductor microcavities. Phys. Rev. B 1998, 58, 15367–15370. [Google Scholar] [CrossRef]
- Dhara, S.; Chakraborty, C.; Goodfellow, K.M.; Qiu, L.; O’Loughlin, T.A.; Wicks, G.W.; Bhattacharjee, S.; Vamivakas, A.N. Anomalous Dispersion of Microcavity Trion-Polaritons. Nat. Phys. 2018, 14, 130–133. [Google Scholar] [CrossRef]
- Yoshino, S.; Oohata, G.; Mizoguchi, K. Dynamical Fano-Like Interference between Rabi Oscillations and Coherent Phonons in a Semiconductor Microcavity System. Phys. Rev. Lett. 2015, 115, 157402. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, H. Classical Mechanics; Addison-Wesley: Reading, MA, USA, 1951; p. 336. [Google Scholar]
- Atkins, P.W. Molecular Spectra; Clarendon: Oxford, UK, 1970. [Google Scholar]
- Fink, K.S.; Johnson, G.; Carroll, T.; Mar, D.; Pecora, L. Three Coupled Oscillators as a Universal Probe of Synchronization Stability in Coupled Oscillator Arrays. Phys. Rev. E 2000, 61, 5080–5090. [Google Scholar] [CrossRef] [PubMed]
- Garrido Alzar, C.L.; Martinez, M.A.G.; Nussenzveig, P. Classical analog of electromagnetically induced transparency. Am. J. Phys. 2002, 70, 37–41. [Google Scholar] [CrossRef] [Green Version]
- Liu, N.; Langguth, L.; Weiss, T.; Kästel, J.; Fleischhauer, M.; Pfau, T.; Giessen, H. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat. Mater. 2009, 8, 758–762. [Google Scholar] [CrossRef] [PubMed]
- Homola, J. Electromagnetic theory of surface plasmons. In Surface Plasmon Resonance Based Sensors; Springer: Berlin/Heidelberg, Germany, 2006; pp. 3–44. [Google Scholar] [CrossRef]
- Delga, A.; Feist, J.; Bravo-Abad, J.; Garcia-Vidal, F. Theory of strong coupling between quantum emitters and localized surface plasmons. J. Opt. 2014, 16, 114018. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Wang, J. Defect-Enhanced Exciton–Exciton Annihilation in Monolayer Transition Metal Dichalcogenides at High Exciton Densities. ACS Photonics 2021, 8, 2770–2780. [Google Scholar] [CrossRef]
- Passarelli, J.V.; Mauck, C.M.; Winslow, S.W.; Perkinson, C.F.; Bard, J.C.; Sai, H.; Williams, K.W.; Narayanan, A.; Fairfield, D.J.; Hendricks, M.P.; et al. Tunable exciton binding energy in 2D hybrid layered perovskites through donor–acceptor interactions within the organic layer. Nat. Chem. 2020, 12, 672–682. [Google Scholar] [CrossRef]
- Liu, X.; Galfsky, T.; Sun, Z.; Xia, F.; Lin, E.-C.; Lee, Y.-H.; Kéna-Cohen, S.; Menon, V.M. Strong light–matter coupling in two-dimensional atomic crystals. Nat. Photon 2014, 9, 30–34. [Google Scholar] [CrossRef]
- Chakraborty, B.; Gu, J.; Sun, Z.; Khatoniar, M.; Bushati, R.; Boehmke, A.; Koots, R.; Menon, V.M. Control of Strong Light–Matter Interaction in Monolayer WS2 through Electric Field Gating. Nano Lett. 2018, 18, 6455–6460. [Google Scholar] [CrossRef]
- Cuadra, J.; Baranov, D.; Wersäll, M.; Verre, R.; Antosiewicz, T.J.; Shegai, T. Observation of Tunable Charged Exciton Polaritons in Hybrid Monolayer WS2−Plasmonic Nanoantenna System. Nano Lett. 2018, 18, 1777–1785. [Google Scholar] [CrossRef] [Green Version]
- Dey, P.; Paul, J.; Wang, Z.; Stevens, C.E.; Liu, C.; Romero, A.H.; Shan, J.; Hilton, D.J.; Karaiskaj, D. Optical Coherence in Atomic-Monolayer Transition-Metal Dichalcogenides Limited by Electron-Phonon Interactions. Phys. Rev. Lett. 2016, 116, 127402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, B.; Zu, S.; Zhang, Z.; Zheng, L.; Jiang, Q.; Du, B.; Luo, Y.; Gong, Y.; Zhang, Y.; Lin, F.; et al. Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Opto-Electron. Adv. 2019, 2, 19000801–19000809. [Google Scholar] [CrossRef]
- Jiang, P.; Song, G.; Wang, Y.; Li, C.; Wang, L.; Yu, L. Tunable strong exciton-plasmon-exciton coupling in WS2-J-aggregates-plasmonic nanocavity. Opt. Express 2019, 27, 16613–16623. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Xu, Y.; Chen, T.-Y.; Jing, H.; Shi, W.-B.; Xiong, B.; Peng, R.-W.; Wang, M. Multimode photon-exciton coupling in an organic-dye-attached photonic quasicrystal. Opt. Lett. 2016, 41, 5740–5743. [Google Scholar] [CrossRef] [PubMed]
- Balasubrahmaniyam, M.; Kar, D.; Sen, P.; Bisht, P.B.; Kasiviswanathan, S. Observation of subwavelength localization of cavity plasmons induced by ultra-strong exciton coupling. Appl. Phys. Lett. 2017, 110, 171101. [Google Scholar] [CrossRef]
- Hakala, T.K.; Toppari, J.; Kuzyk, A.; Pettersson, M.; Tikkanen, H.; Kunttu, H.; Törmä, P. Vacuum Rabi Splitting and Strong-Coupling Dynamics for Surface-Plasmon Polaritons and Rhodamine 6 G Molecules. Phys. Rev. Lett. 2009, 103, 053602. [Google Scholar] [CrossRef] [Green Version]
- Pettinger, B. Light scattering by adsorbates at Ag particles: Quantum-mechanical approach for energy transfer induced interfacial optical processes involving surface plasmons, multipoles, and electron-hole pairs. J. Chem. Phys. 1986, 85, 7442–7451. [Google Scholar] [CrossRef]
- Nagasawa, F.; Takase, M.; Murakoshi, K. Raman Enhancement via Polariton States Produced by Strong Coupling between a Localized Surface Plasmon and Dye Excitons at Metal Nanogaps. J. Phys. Chem. Lett. 2013, 5, 14–19. [Google Scholar] [CrossRef]
- Hutchison, J.A.; Schwartz, T.; Genet, C.; Devaux, E.; Ebbesen, T.W. Modifying Chemical Landscapes by Coupling to Vacuum Fields. Angew. Chem. Int. Ed. 2012, 51, 1592–1596. [Google Scholar] [CrossRef]
- Hutchison, J.; Liscio, A.; Schwartz, T.; Canaguier-Durand, A.; Genet, C.; Palermo, V.; Samorì, P.; Ebbesen, T.W. Tuning the Work-Function Via Strong Coupling. Adv. Mater. 2013, 25, 2481–2485. [Google Scholar] [CrossRef]
- Lidzey, D.G.; Bradley, D.D.C.; Armitage, A.; Walker, S.; Skolnick, M.S. Photon-Mediated Hybridization of Frenkel Excitons in Organic Semiconductor Microcavities. Science 2000, 288, 1620–1623. [Google Scholar] [CrossRef] [PubMed]
- Savateeva, D.; Melnikau, D.; Susha, A.; Rogach, A.L.; Rakovich, Y.P. Plasmon-exciton strong coupling in a hybrid system of gold nanostars and J-aggregates. Nanoscale Res. Lett. 2013, 8, 134. [Google Scholar] [CrossRef]
- Fofang, N.T.; Park, T.-H.; Neumann, O.; Mirin, N.A.; Nordlander, P.; Halas, N.J. Plexcitonic Nanoparticles: Plasmon−Exciton Coupling in Nanoshell−J-Aggregate Complexes. Nano Lett. 2008, 8, 3481–3487. [Google Scholar] [CrossRef] [PubMed]
- Coles, D.M.; Somaschi, N.; Michetti, P.; Clark, C.; Lagoudakis, P.; Savvidis, P.; Lidzey, D. Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity. Nat. Mater. 2014, 13, 712–719. [Google Scholar] [CrossRef]
- Ferdele, S.; Jose, B.; Foster, R.; Keyes, T.E.; Rice, J.H. Strong coupling in porphyrin J-aggregate excitons and plasmons in nano-void arrays. Opt. Mater. 2017, 72, 680–684. [Google Scholar] [CrossRef]
- Song, G.; Yu, L.; Duan, G.; Wang, L. Strong Coupling in the Structure of Single Metallic Nanoparticle Partially Buried in Molecular J-Aggregates. Plasmonics 2017, 13, 743–747. [Google Scholar] [CrossRef]
- Wang, H.; Bozzola, A.; Toma, A.; Panaro, S.; Raja, W.; Alabastri, A.; Wang, L.; Chen, Q.-D.; Xu, H.-L.; De Angelis, F.; et al. Dynamics of Strong Coupling between J-Aggregates and Surface Plasmon Polaritons in Subwavelength Hole Arrays. Adv. Funct. Mater. 2016, 26, 6198–6205. [Google Scholar] [CrossRef]
- Zhang, K.; Shi, W.-B.; Wang, D.; Xu, Y.; Peng, R.-W.; Fan, R.-H.; Wang, Q.-J.; Wang, M. Couple molecular excitons to surface plasmon polaritons in an organic-dye-doped nanostructured cavity. Appl. Phys. Lett. 2016, 108, 193111. [Google Scholar] [CrossRef]
- Wang, H.; Wang, L.; Chen, Q.; Xu, H.; Carrara, A.; Zaccaria, R.P.; Sun, H.; Toma, A. Multimode Coherent Hybrid States: Ultrafast Investigation of Double Rabi Splitting between Surface Plasmons and Sulforhodamine 101 Dyes. Adv. Opt. Mater. 2017, 5, 6198–6205. [Google Scholar] [CrossRef]
- Yang, H.; Yao, J.; Wu, X.-W.; Wu, D.-J.; Liu, X.-J. Strong Plasmon–Exciton–Plasmon Multimode Couplings in Three-Layered Ag–J-Aggregates–Ag Nanostructures. J. Phys. Chem. C 2017, 121, 25455–25462. [Google Scholar] [CrossRef]
- Li, X.; Liu, F.; Tian, M.; Zhong, X. Tunable Multimode Plasmon–Exciton Coupling for Absorption-Induced Transparency and Strong Coupling. J. Phys. Chem. C 2020, 124, 23888–23894. [Google Scholar] [CrossRef]
- Xu, L.; Li, F.; Liu, S.; Yao, F.; Liu, Y. Low Threshold Plasmonic Nanolaser Based on Graphene. Appl. Sci. 2018, 8, 2186. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Li, F.; Han, X.; Xu, L.; Yao, F.; Liu, Y. Preparation and Two-Photon Photoluminescence Properties of Organic Inorganic Hybrid Perovskites (C6H5CH2NH3)2PbBr4 and (C6H5CH2NH3)2PbI4. Appl. Sci. 2018, 8, 2286. [Google Scholar] [CrossRef] [Green Version]
- Vasa, P.; Wang, W.; Pomraenke, R.; Lammers, M.; Maiuri, M.; Manzoni, C.; Cerullo, G.; Lienau, C. Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates. Nat. Photonics 2013, 7, 128–132. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Bao, W.; Li, Q.; Ropp, C.; Wang, Y.; Zhang, X. Control of Coherently Coupled Exciton Polaritons in Monolayer Tungsten Disulphide. Phys. Rev. Lett. 2017, 119, 027403. [Google Scholar] [CrossRef] [Green Version]
- Baudrion, A.-L.; Perron, A.; Veltri, A.; Bouhelier, A.; Adam, P.-M.; Bachelot, R. Reversible Strong Coupling in Silver Nanoparticle Arrays Using Photochromic Molecules. Nano Lett. 2012, 13, 282–286. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Lee, H.; Im, S.; Lee, S.A.; Kim, D.; Toh, K.-A. Machine learning-based leaky momentum prediction of plasmonic random nanosubstrate. Opt. Express 2021, 29, 30625. [Google Scholar] [CrossRef]
- Meng, J.; Cadusch, J.J.; Crozier, K.B. Plasmonic Mid-Infrared Filter Array-Detector Array Chemical Classifier Based on Machine Learning. ACS Photonics 2021, 8, 648–657. [Google Scholar] [CrossRef]
- Ma, Y.P.; Li, Q.; Luo, J.B.; Huang, C.Z.; Zhou, J. Weak Reaction Scatterometry of Plasmonic Resonance Light Scattering with Machine Learning. Anal. Chem. 2021, 93, 12131–12138. [Google Scholar] [CrossRef]
- He, J.; He, C.; Zheng, C.; Wang, Q.; Ye, J. Plasmonic nanoparticle simulations and inverse design using machine learning. Nanoscale 2019, 11, 17444–17459. [Google Scholar] [CrossRef]
- Baxter, J.; Lesina, A.C.; Guay, J.-M.; Ramunno, L. Machine Learning Applications in Plasmonics. In Proceedings of the 2018 Photonics North, Montreal, QC, Canada, 5–7 June 2018. [Google Scholar] [CrossRef]
- Schachenmayer, J.; Genes, C.; Tignone, E.; Pupillo, G. Cavity-Enhanced Transport of Excitons. Phys. Rev. Lett. 2015, 114, 196403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orgiu, E.; George, J.; Hutchison, J.; Devaux, E.; Dayen, J.F.; Doudin, B.; Stellacci, F.; Genet, C.; Schachenmayer, J.; Genes, C.; et al. Conductivity in organic semiconductors hybridized with the vacuum field. Nat. Mater. 2015, 14, 1123–1129. [Google Scholar] [CrossRef] [PubMed]
Different Multimode Coupling | Applications | |
---|---|---|
Multimode Coupling related to microcavity nanostructure | Coupling related to TMDs microcavity nanostructure | Optical modulators at the nanoscale and polaritonic devices based on ultrathin materials, etc. |
Coupling related to single-dye microcavity nanostructure | Multimode sensors and spectroscopy, etc. | |
Coupling related to two-dyes microcavity nanostructure | Integrated microcavity sensors and optical device, etc. | |
Coupling related to periodic noble metallic nanoparticles- J-aggregates nanostructure | Multimode lasers and optical micro-spectroscopy, etc. | |
Multimode coupling related to core–shell multicomponent systems | Nanoscale optical information storage and processing, etc. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Z.; Xu, C.; He, W.; He, J.; Zhou, Y.; Li, F. Principle and Applications of Multimode Strong Coupling Based on Surface Plasmons. Nanomaterials 2022, 12, 1242. https://doi.org/10.3390/nano12081242
He Z, Xu C, He W, He J, Zhou Y, Li F. Principle and Applications of Multimode Strong Coupling Based on Surface Plasmons. Nanomaterials. 2022; 12(8):1242. https://doi.org/10.3390/nano12081242
Chicago/Turabian StyleHe, Zhicong, Cheng Xu, Wenhao He, Jinhu He, Yunpeng Zhou, and Fang Li. 2022. "Principle and Applications of Multimode Strong Coupling Based on Surface Plasmons" Nanomaterials 12, no. 8: 1242. https://doi.org/10.3390/nano12081242
APA StyleHe, Z., Xu, C., He, W., He, J., Zhou, Y., & Li, F. (2022). Principle and Applications of Multimode Strong Coupling Based on Surface Plasmons. Nanomaterials, 12(8), 1242. https://doi.org/10.3390/nano12081242