Wettability Improvement in Oil–Water Separation by Nano-Pillar ZnO Texturing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of ZnO Seed Layers
2.2. Preparation of ZnO Nano-Pillar Coated Substrates
2.3. Characteristic Analysis
2.4. Oil–Water Separation
3. Results and Discussion
3.1. Surface Morphology and Chemical Composition of ZnO Coated Metal Fiber Felt
3.2. Surface Wettability
3.3. Separation of Oil-in-Water Emulsions
3.4. Separation of Water-in-Oil Emulsions
3.5. Demulsification Mechanism in Oil-in-Water and Water-in-Oil Emulsion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Wang, Q.; Wang, B.; Tian, Y.; Di, J.; Wang, Z.; Jiang, L.; Yu, J. Modulation of solid surface with desirable under-liquid wettability based on molecular hydrophilic-lipophilic balance. Chem. Sci. 2021, 12, 6136–6142. [Google Scholar] [CrossRef] [PubMed]
- Wong, W.S.Y. Surface chemistry enhancements for the tunable super-liquid repellency of low-surface-tension liquids. Nano Lett. 2019, 19, 1892–1901. [Google Scholar] [CrossRef] [PubMed]
- Chanut, J.; Wang, Y.; Cin, I.D.; Ferret, E.; Gougeon, R.D.; Bellat, J.-P.; Karbowiak, T. Surface properties of cork: Is cork a hydrophobic material? J. Colloid Interface Sci. 2022, 608, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q.; Wang, Z.; He, W.; Guan, Y. Fabrication of super hydrophilic surface on alumina ceramic by ultrafast laser microprocessing. Appl. Surf. Sci. 2021, 557, 149842. [Google Scholar] [CrossRef]
- Atta, A.M.; Abdullah, M.M.S.; Al-Lohedan, H.A.; Mohamed, N.H. Novel superhydrophobic sand and polyurethane sponge coated with silica/modified asphaltene nanoparticles for rapid oil spill cleanup. Nanomaterials 2019, 9, 187. [Google Scholar] [CrossRef] [Green Version]
- El-Khatib, E.M.; Ali, N.F.; Nassar, S.H.; El-Shemy, N.S. Functionalization of natural fibers properties by using TiO(2) nanoparticles to improve its antimicrobial activity. Biointerface Res. Appl. Chem. 2022, 12, 4177–4191. [Google Scholar]
- Li, R.; Chen, T.; Pan, X. Metal–organic-framework-based materials for antimicrobial applications. ACS Nano 2021, 15, 3808–3848. [Google Scholar] [CrossRef]
- Zhao, W.; Xiao, L.; He, X.; Cui, Z.; Fang, J.; Zhang, C.; Li, X.; Li, G.; Zhong, L.; Zhang, Y. Moth-eye-inspired texturing surfaces enabled self-cleaning aluminum to achieve photothermal anti-icing. Opt. Laser Technol. 2021, 141, 107115. [Google Scholar] [CrossRef]
- Axinte, D.; Guo, Y.; Liao, Z.; Shih, A.J.; M’Saoubi, R.; Sugita, N. Machining of biocompatible materials—Recent advances. CIRP Ann. 2019, 68, 629–652. [Google Scholar] [CrossRef]
- Chen, H.; Wang, R.; Meng, W.; Chen, F.; Li, T.; Wang, D.; Wei, C.; Lu, H.; Yang, W. Three-dimensional superhydrophobic hollow hemispherical MXene for efficient water-in-oil emulsions separation. Nanomaterials 2021, 11, 2866. [Google Scholar] [CrossRef]
- Mahdi, N.; Kumar, P.; Goswami, A.; Perdicakis, B.; Shankar, K.; Sadrzadeh, M. Robust polymer nanocomposite membranes incorporating discrete TiO2 nanotubes for water treatment. Nanomaterials 2019, 9, 1186. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Huang, Q.; Huang, Y.; Yu, S.; Xiao, C.; Hu, Q. Pore structure design of NFES PTFE membrane for membrane emulsification. J. Membr. Sci. 2020, 611, 118365. [Google Scholar] [CrossRef]
- Sai, H.; Jin, Z.; Wang, Y.; Fu, R.; Wang, Y.; Ma, L. Facile and green route to fabricate bacterial cellulose membrane with superwettability for oil–water separation. Adv. Sustain. Syst. 2020, 4, 2000042. [Google Scholar] [CrossRef]
- Na, X.; Zhou, W.; Li, T.; Hong, D.; Li, J.; Ma, G. Preparation of double-emulsion-templated microspheres with controllable porous structures by premix membrane emulsification. Particuology 2019, 44, 22–27. [Google Scholar] [CrossRef]
- Chen, C.; Chen, L.; Chen, S.; Yu, Y.; Weng, D.; Mahmood, A.; Wang, G.; Wang, J. Preparation of underwater superoleophobic membranes via TiO2 electrostatic self-assembly for separation of stratified oil/water mixtures and emulsions. J. Membr. Sci. 2020, 602, 117976. [Google Scholar] [CrossRef]
- Oliveira Neto, G.L.; Oliveira, N.G.; Delgado, J.M.; Nascimento, L.P.; Magalhães, H.L.; Oliveira, P.L.d.; Gomez, R.S.; Farias Neto, S.R.; Lima, A.G. Hydrodynamic and performance evaluation of a porous ceramic membrane module used on the water–oil separation process: An investigation by CFD. Membranes 2021, 11, 121. [Google Scholar] [CrossRef]
- Qiu, L.; Zhang, J.; Guo, Z.; Liu, W. Asymmetric superwetting stainless steel meshes for on-demand and highly effective oil-water emulsion separation. Sep. Purif. Technol. 2021, 273, 118994. [Google Scholar] [CrossRef]
- Li, F.; Bhushan, B.; Pan, Y.; Zhao, X. Bioinspired superoleophobic/superhydrophilic functionalized cotton for efficient separation of immiscible oil-water mixtures and oil-water emulsions. J. Colloid Interface Sci. 2019, 548, 123–130. [Google Scholar] [CrossRef]
- Luo, S.; Dai, X.; Sui, Y.; Li, P.; Zhang, C. Preparation of biomimetic membrane with hierarchical structure and honeycombed through-hole for enhanced oil–water separation performance. Polymer 2021, 218, 123522. [Google Scholar] [CrossRef]
- Lu, J.; Li, F.; Miao, G.; Miao, X.; Ren, G.; Wang, B.; Song, Y.; Li, X.; Zhu, X. Superhydrophilic/superoleophobic shell powder coating as a versatile platform for both oil/water and oil/oil separation. J. Membr. Sci. 2021, 637, 119624. [Google Scholar] [CrossRef]
- Zheng, H.; Lehtinen, M.J.; Liu, G. Hydrophobic modification of sintered glass filters for the separation of organic solvents and gasoline from water as well as emulsified water. J. Environ. Chem. Eng. 2021, 9, 106449. [Google Scholar] [CrossRef]
- Mino, Y.; Hasegawa, A.; Shinto, H.; Matsuyama, H. Lattice-Boltzmann flow simulation of an oil-in-water emulsion through a coalescing filter: Effects of filter structure. Chem. Eng. Sci. 2018, 177, 210–217. [Google Scholar] [CrossRef]
- Woo, S.; Park, H.R.; Park, J.; Yi, J.; Hwang, W. Robust and continuous oil/water separation with superhydrophobic glass microfiber membrane by vertical polymerization under harsh conditions. Sci. Rep. 2020, 10, 21413. [Google Scholar] [CrossRef]
- You, X.; Liao, Y.; Tian, M.; Chew, J.W.; Wang, R. Engineering highly effective nanofibrous membranes to demulsify surfactant-stabilized oil-in-water emulsions. J. Membr. Sci. 2020, 611, 118398. [Google Scholar] [CrossRef]
- Zhu, X.; Zhu, L.; Li, H.; Zhang, C.; Xue, J.; Wang, R.; Qiao, X.; Xue, Q. Enhancing oil-in-water emulsion separation performance of polyvinyl alcohol hydrogel nanofibrous membrane by squeezing coalescence demulsification. J. Membr. Sci. 2021, 630, 119324. [Google Scholar] [CrossRef]
- Wei, W.; Sun, M.; Zhang, L.; Zhao, S.; Wu, J.; Wang, J. Underwater oleophobic PTFE membrane for efficient and reusable emulsion separation and the influence of surface wettability and pore size. Sep. Purif. Technol. 2017, 189, 32–39. [Google Scholar] [CrossRef]
- Xi, J.; Lou, Y.; Jiang, S.; Fang, G.; Wu, W. Robust paper-based materials for efficient oil–water emulsion separation. Cellulose 2021, 28, 10565–10578. [Google Scholar] [CrossRef]
- Rangel-Muñoz, N.; González-Barrios, A.F.; Pradilla, D.; Osma, J.F.; Cruz, J.C. Novel bionanocompounds: Outer membrane protein a and laccase co-immobilized on magnetite nanoparticles for produced water treatment. Nanomaterials 2020, 10, 2278. [Google Scholar] [CrossRef]
- Nguyen, D.C.; Bui, T.T.; Cho, Y.B.; Kim, Y.S. Highly hydrophobic polydimethylsiloxane-coated expanded vermiculite sorbents for selective oil removal from water. Nanomaterials 2021, 11, 367. [Google Scholar] [CrossRef] [PubMed]
- Saththasivam, J.; Wubulikasimu, Y.; Ogunbiyi, O.; Liu, Z. Fast and efficient separation of oil/saltwater emulsions with anti-fouling ZnO microsphere/carbon nanotube membranes. J. Water Process Eng. 2019, 32, 100901. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, Z.; Weng, J.; Yu, D.; Liang, Y.; Xu, X.; Qiao, Z.; Zhang, G.; Yang, H.; Wu, X. Molecular understanding and design of porous polyurethane hydrogels with ultralow-oil-adhesion for oil-water separation. ACS Appl. Mater. Interfaces 2020, 12, 56530–56540. [Google Scholar] [CrossRef]
- Wu, J.X.; Zhang, J.; Kang, Y.L.; Wu, G.; Chen, S.C.; Wang, Y.Z. Reusable and recyclable superhydrophilic electrospun nanofibrous membranes with in situ co-cross-linked polymer–chitin nanowhisker network for robust oil-in-water emulsion separation. ACS Sustain. Chem. Eng. 2018, 6, 1753–1762. [Google Scholar] [CrossRef]
- Li, Y.; He, Y.; Zhuang, J.; Shi, H. An intelligent natural fibrous membrane anchored with ZnO for switchable oil/water separation and water purification. Colloids Surf. A Physicochem. Eng. Asp. 2022, 634, 128041. [Google Scholar] [CrossRef]
- Zhou, F.; Wang, Y.; Dai, L.; Xu, F.; Qu, K.; Xu, Z. Anchoring metal organic frameworks on nanofibers via etching-assisted strategy: Toward water-in-oil emulsion separation membranes. Sep. Purif. Technol. 2022, 281, 119812. [Google Scholar] [CrossRef]
- Wang, K.; He, H.; Wei, B.; Zhang, T.C.; Chang, H.; Li, Y.; Tian, X.; Fan, Y.; Liang, Y.; Yuan, S. Multifunctional switchable nanocoated membranes for efficient integrated purification of oil/water emulsions. ACS Appl. Mater. Interfaces 2021, 13, 54315–54323. [Google Scholar] [CrossRef]
- Ji, S.M.; Tiwari, A.P.; Oh, H.J.; Kim, H.Y. ZnO/Ag nanoparticles incorporated multifunctional parallel side by side nanofibers for air filtration with enhanced removing organic contaminants and antibacterial properties. Colloids Surf. A Physicochem. Eng. Asp. 2021, 621, 126564. [Google Scholar] [CrossRef]
- Chen, Z.; Gao, L. A facile route to ZnO nanorod arrays using wet chemical method. J. Cryst. Growth 2006, 293, 522–527. [Google Scholar] [CrossRef]
- Li, P.; Wei, Y.; Liu, H.; Wang, X. A simple low-temperature growth of ZnO nanowhiskers directly from aqueous solution containing Zn(OH)42− ions. Chem. Commun. 2004, 24, 2856–2857. [Google Scholar] [CrossRef]
- Liu, B.; Zeng, H.C. Room temperature solution synthesis of monodispersed single-crystalline ZnO nanorods and derived hierarchical nanostructures. Langmuir 2004, 20, 4196–4204. [Google Scholar] [CrossRef]
- You, Q.; Ran, G.; Wang, C.; Zhao, Y.; Song, Q. A novel superhydrophilic–underwater superoleophobic Zn-ZnO electrodeposited copper mesh for efficient oil/water separation. Sep. Purif. Technol. 2018, 193, 21–28. [Google Scholar] [CrossRef]
- Huang, A.; Chen, L.H.; Kan, C.C.; Hsu, T.Y.; Wu, S.E.; Jana, K.K.; Tung, K.L. Fabrication of zinc oxide nanostructure coated membranes for efficient oil/water separation. J. Membr. Sci. 2018, 566, 249–257. [Google Scholar] [CrossRef]
- Yang, P.; Yang, J.; Wu, Z.; Zhang, X.; Liu, Y.; Lu, M. Facile fabrication of superhydrophilic and underwater superoleophobic surfaces on cotton fabrics for effective oil/water separation with excellent anti-contamination ability. Colloids Surf. A Physicochem. Eng. Asp. 2021, 628, 127290. [Google Scholar] [CrossRef]
- Li, C.; Ren, L.; Zhang, C.; Xu, W.; Liu, X. TiO2 Coated polypropylene membrane by atomic layer deposition for oil–water mixture separation. Adv. Fiber Mater. 2021, 3, 138–146. [Google Scholar] [CrossRef]
- Wei, Y.; Xie, Z.; Qi, H. Superhydrophobic-superoleophilic SiC membranes with micro-nano hierarchical structures for high-efficient water-in-oil emulsion separation. J. Membr. Sci. 2020, 601, 117842. [Google Scholar] [CrossRef]
- Fan, X.; Wang, W.; Su, J.; Wang, P. Mechanically robust superhydrophobic mesh for oil/water separation by a seed free hydrothermal method. Mater. Res. Express 2018, 6, 015026. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Feng, S.; Wang, C.; Yan, D.; Chen, L.; Wang, B. Wettability Improvement in Oil–Water Separation by Nano-Pillar ZnO Texturing. Nanomaterials 2022, 12, 740. https://doi.org/10.3390/nano12050740
Liu X, Feng S, Wang C, Yan D, Chen L, Wang B. Wettability Improvement in Oil–Water Separation by Nano-Pillar ZnO Texturing. Nanomaterials. 2022; 12(5):740. https://doi.org/10.3390/nano12050740
Chicago/Turabian StyleLiu, Xiaoyan, Shaotong Feng, Caihua Wang, Dayun Yan, Lei Chen, and Bao Wang. 2022. "Wettability Improvement in Oil–Water Separation by Nano-Pillar ZnO Texturing" Nanomaterials 12, no. 5: 740. https://doi.org/10.3390/nano12050740
APA StyleLiu, X., Feng, S., Wang, C., Yan, D., Chen, L., & Wang, B. (2022). Wettability Improvement in Oil–Water Separation by Nano-Pillar ZnO Texturing. Nanomaterials, 12(5), 740. https://doi.org/10.3390/nano12050740